論文の概要: History Matching under Uncertainty of Geological Scenarios with Implicit Geological Realism Control with Generative Deep Learning and Graph Convolutions
- arxiv url: http://arxiv.org/abs/2507.10201v1
- Date: Mon, 14 Jul 2025 12:14:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.859724
- Title: History Matching under Uncertainty of Geological Scenarios with Implicit Geological Realism Control with Generative Deep Learning and Graph Convolutions
- Title(参考訳): 生成的深層学習とグラフ畳み込みによる地質学シナリオの不確実性を考慮した歴史マッチング
- Authors: Gleb Shishaev, Vasily Demyanov, Daniel Arnold,
- Abstract要約: グラフベースの変分オートエンコーダは、異なる地質学的シナリオの不確実性を扱うことができるアーキテクチャを表す。
我々はPCA, t-SNE, TDAなどのツールを用いて, 潜伏空間の詳細な解析を行い, その構造を説明する。
- 参考スコア(独自算出の注目度): 0.10923877073891446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The graph-based variational autoencoder represents an architecture that can handle the uncertainty of different geological scenarios, such as depositional or structural, through the concept of a lowerdimensional latent space. The main difference from recent studies is utilisation of a graph-based approach in reservoir modelling instead of the more traditional lattice-based deep learning methods. We provide a solution to implicitly control the geological realism through the latent variables of a generative model and Geodesic metrics. Our experiments of AHM with synthetic dataset that consists of 3D realisations of channelised geological representations with two distinct scenarios with one and two channels shows the viability of the approach. We offer in-depth analysis of the latent space using tools such as PCA, t-SNE, and TDA to illustrate its structure.
- Abstract(参考訳): グラフベースの変分オートエンコーダは、低次元の潜在空間の概念を通じて、堆積や構造といった異なる地質学的シナリオの不確実性を扱うことができるアーキテクチャである。
最近の研究との大きな違いは、より伝統的な格子ベースのディープラーニング手法の代わりに、貯水池モデリングにおけるグラフベースのアプローチの利用である。
我々は、生成モデルの潜伏変数と測地線メトリクスを通して、地質的リアリズムを暗黙的に制御するソリューションを提供する。
AHMと合成データセットを併用したAHM実験では, チャネル化された地質表現の3次元的実現と, 1チャンネルと2チャンネルの異なる2つのシナリオにより, アプローチの生存可能性を示す。
我々はPCA, t-SNE, TDAなどのツールを用いて, 潜伏空間の詳細な解析を行い, その構造を説明する。
関連論文リスト
- Geological Everything Model 3D: A Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding [8.832957977030198]
Geological Everything Model 3D (GEM) は、タスクを迅速な条件付き推論として再構成する統合生成アーキテクチャである。
GEMは、新しいタスクやデータソースを再訓練することなく、不均一なプロンプト型を持つタスク間でゼロショットの一般化を実現する。
GEMは、火星レーダー層序解析、沈み込み帯の構造解釈、完全な地震層序解釈、地体セグメンテーション、資産モデリングなど、調査やタスクに幅広い適用性を示す。
論文 参考訳(メタデータ) (2025-07-01T04:14:13Z) - Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
我々はオブジェクトポイントクラウド上でSim2Real UDAのための新しいTopology-Aware Modeling (TAM)フレームワークを紹介する。
提案手法は,低レベルの高周波3次元構造を特徴とするグローバル空間トポロジを利用して,領域間隙を緩和する。
本稿では,クロスドメイン・コントラスト学習と自己学習を組み合わせた高度な自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-26T11:53:59Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology [23.70495314317551]
スパースおよび不規則に間隔を置いた点雲のニューラル暗黙表面再構成のための新しいアプローチSTITCHを提案する。
連続ホモロジーに基づく新しい微分可能なフレームワークを開発し、トポロジ的損失項を定式化し、1つの2次元多様体オブジェクトの先行を強制する。
論文 参考訳(メタデータ) (2024-12-24T22:55:35Z) - Edge Classification on Graphs: New Directions in Topological Imbalance [53.42066415249078]
異なるクラスにまたがるエッジの歪んだ分布から生じる新しいトポロジカル不均衡問題」を同定する。
本稿では,各エッジのトポロジ的不均衡を測定する新しいトポロジ的指標であるトポロジカルエントロピー(TE)を紹介する。
TEをベースとした(合成)エッジのトレーニングに重点を置くため、トポロジカルリウェイトリングとTEウェッジベースのMixupという2つの戦略を開発した。
論文 参考訳(メタデータ) (2024-06-17T16:02:36Z) - Surrogate Model for Geological CO2 Storage and Its Use in Hierarchical
MCMC History Matching [0.0]
我々は、最近導入されたR-U-Netサロゲートモデルを拡張し、幅広い地質シナリオから引き出されたジオモデルの実現を取り扱う。
本研究では, 人工真理モデルにおける観測井の観測データを用いて, 地質的不確実性を大幅に低減することを示した。
論文 参考訳(メタデータ) (2023-08-11T18:29:28Z) - Learning Topology-Preserving Data Representations [9.710409273484464]
位相保存データ表現(次元減少)を学習する手法を提案する。
この手法の中核は、元の高次元データと潜時空間における低次元表現との間の表現トポロジディバージェンス(RTD)の最小化である。
提案手法は, 線形相関, 三重項距離ランキング精度, 永続バーコード間のワッサーシュタイン距離によって測定された, 最先端の競合相手よりも, データ多様体のグローバル構造とトポロジーをよりよく保存する。
論文 参考訳(メタデータ) (2023-01-31T22:55:04Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
グラフトポロジ情報をグラフニューラルネットワーク(GNN)に符号化することを目的とした知識伝達の新しいパラダイムについて検討する。
本稿では,GNNのアーキテクチャに関する基礎となる多様体の幾何学的性質をカプセル化するためのニューラルヒートカーネル(NHK)を提案する。
基本的な原理的解法は、NHKを幾何学的知識蒸留(Geometric Knowledge Distillation)と呼ばれる教師モデルと学生モデルに合わせることで導かれる。
論文 参考訳(メタデータ) (2022-10-24T08:01:58Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Predictive Geological Mapping with Convolution Neural Network Using
Statistical Data Augmentation on a 3D Model [0.0]
本研究では,3次元地質・磁気感受性モデルを用いたデータ拡張ワークフローを構築した。
Gated Shape Convolutional Neural Networkアルゴリズムは、地質図を作成するために生成された合成データセットに基づいて訓練された。
合成データセットの一部と周辺地域のデータを用いて行った検証結果から, この手法が海底地質の区分に適していることが示唆された。
論文 参考訳(メタデータ) (2021-10-27T13:56:40Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。