論文の概要: Learning Topology-Preserving Data Representations
- arxiv url: http://arxiv.org/abs/2302.00136v1
- Date: Tue, 31 Jan 2023 22:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 18:20:57.567353
- Title: Learning Topology-Preserving Data Representations
- Title(参考訳): トポロジに基づくデータ表現の学習
- Authors: Ilya Trofimov, Daniil Cherniavskii, Eduard Tulchinskii, Nikita
Balabin, Evgeny Burnaev, Serguei Barannikov
- Abstract要約: 位相保存データ表現(次元減少)を学習する手法を提案する。
この手法の中核は、元の高次元データと潜時空間における低次元表現との間の表現トポロジディバージェンス(RTD)の最小化である。
提案手法は, 線形相関, 三重項距離ランキング精度, 永続バーコード間のワッサーシュタイン距離によって測定された, 最先端の競合相手よりも, データ多様体のグローバル構造とトポロジーをよりよく保存する。
- 参考スコア(独自算出の注目度): 9.710409273484464
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a method for learning topology-preserving data representations
(dimensionality reduction). The method aims to provide topological similarity
between the data manifold and its latent representation via enforcing the
similarity in topological features (clusters, loops, 2D voids, etc.) and their
localization. The core of the method is the minimization of the Representation
Topology Divergence (RTD) between original high-dimensional data and
low-dimensional representation in latent space. RTD minimization provides
closeness in topological features with strong theoretical guarantees. We
develop a scheme for RTD differentiation and apply it as a loss term for the
autoencoder. The proposed method ``RTD-AE'' better preserves the global
structure and topology of the data manifold than state-of-the-art competitors
as measured by linear correlation, triplet distance ranking accuracy, and
Wasserstein distance between persistence barcodes.
- Abstract(参考訳): 本稿では,トポロジ保存データ表現(次元減少)の学習手法を提案する。
本手法は, トポロジ的特徴(クラスタ, ループ, 2次元ヴォイドなど)の類似性とその局所化を強制することにより, データ多様体と潜在表現との位相的類似性を提供することを目的とする。
この手法の中核は、元の高次元データと潜時空間における低次元表現との間の表現トポロジディバージェンス(RTD)の最小化である。
RTD の最小化は、強い理論的保証を持つ位相的特徴の近接性を提供する。
本稿では,RTDの識別手法を開発し,オートエンコーダの損失項として適用する。
提案手法である`rtd-ae'は,線形相関,三重項距離ランキング精度,永続バーコード間のwasserstein距離などによって測定されるデータ多様体の全体構造とトポロジーをよりよく保存する。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
本稿では,非パラメトリック推定による暗黙的な連続性を持つ高次元階層データを埋め込むためのhGP-LVMを提案する。
論文 参考訳(メタデータ) (2024-10-22T05:07:30Z) - Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
階層的生成潜在蒸留(H-GLaD)と呼ばれる新しいパラメータ化法を提案する。
本手法はGAN内の階層層を系統的に探索する。
さらに,合成データセット評価に伴う計算負担を軽減するために,新しいクラス関連特徴距離尺度を導入する。
論文 参考訳(メタデータ) (2024-06-09T09:15:54Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Topology-Preserving Dimensionality Reduction via Interleaving
Optimization [10.097180927318703]
本稿では, インターリーブ距離を最小化する最適化手法を次元還元アルゴリズムに組み込む方法について述べる。
データビジュアライゼーションにおけるこのフレームワークの有用性を実証する。
論文 参考訳(メタデータ) (2022-01-31T06:11:17Z) - Deep Recursive Embedding for High-Dimensional Data [9.611123249318126]
本稿では,DNN(Deep Neural Network)と高次元データ埋め込みのための数学誘導埋め込みルールを組み合わせることを提案する。
本稿では,高次元空間から低次元空間へのパラメトリックマッピングを学習可能な汎用ディープ埋め込みネットワーク(DEN)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-31T23:22:33Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - Invertible Manifold Learning for Dimension Reduction [44.16432765844299]
次元減少(DR)は,重要情報の保存により高次元データの低次元表現を学習することを目的としている。
Inv-ML(invertible manifold learning)と呼ばれる新しい2段階DR法を提案し、理論的な情報損失のないDRと実用的なDRのギャップを埋める。
実験は、i-ML-Encと呼ばれる、inv-MLのニューラルネットワーク実装による7つのデータセットで実施される。
論文 参考訳(メタデータ) (2020-10-07T14:22:51Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。