論文の概要: Leveraging RAG-LLMs for Urban Mobility Simulation and Analysis
- arxiv url: http://arxiv.org/abs/2507.10382v1
- Date: Mon, 14 Jul 2025 15:23:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.26559
- Title: Leveraging RAG-LLMs for Urban Mobility Simulation and Analysis
- Title(参考訳): RAG-LLMを用いた都市モビリティシミュレーションと解析
- Authors: Yue Ding, Conor McCarthy, Kevin O'Shea, Mingming Liu,
- Abstract要約: モバイルアプリケーションと統合して、パーソナライズされたルートレコメンデーションを行うクラウドベースのLLMベースの共有e-mobilityプラットフォームを提案する。
システムオペレータークエリの平均実行精度は0.81、ユーザクエリは0.98である。
- 参考スコア(独自算出の注目度): 1.7521077353162031
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rise of smart mobility and shared e-mobility services, numerous advanced technologies have been applied to this field. Cloud-based traffic simulation solutions have flourished, offering increasingly realistic representations of the evolving mobility landscape. LLMs have emerged as pioneering tools, providing robust support for various applications, including intelligent decision-making, user interaction, and real-time traffic analysis. As user demand for e-mobility continues to grow, delivering comprehensive end-to-end solutions has become crucial. In this paper, we present a cloud-based, LLM-powered shared e-mobility platform, integrated with a mobile application for personalized route recommendations. The optimization module is evaluated based on travel time and cost across different traffic scenarios. Additionally, the LLM-powered RAG framework is evaluated at the schema level for different users, using various evaluation methods. Schema-level RAG with XiYanSQL achieves an average execution accuracy of 0.81 on system operator queries and 0.98 on user queries.
- Abstract(参考訳): スマートモビリティと共有e-mobilityサービスの台頭により、この分野に数多くの高度な技術が応用されている。
クラウドベースのトラフィックシミュレーションソリューションは繁栄し、進化するモビリティランドスケープの現実的な表現を提供する。
LLMは先駆的なツールとして登場し、インテリジェントな意思決定、ユーザインタラクション、リアルタイムトラフィック分析など、さまざまなアプリケーションに対する堅牢なサポートを提供している。
e-mobilityに対するユーザの需要が拡大し続けており、包括的なエンドツーエンドソリューションの提供が重要になっている。
本稿では,LLMを利用したクラウドベースの共有e-mobilityプラットフォームについて,パーソナライズされたルートレコメンデーションのためのモバイルアプリと統合する。
最適化モジュールは、異なるトラフィックシナリオにわたる旅行時間とコストに基づいて評価される。
さらに, LLMを用いたRAGフレームワークは, 様々な評価手法を用いて, 異なるユーザのスキーマレベルで評価される。
XiYanSQLを使ったスキーマレベルのRAGは、システムオペレータークエリの平均実行精度が0.81、ユーザクエリが0.98である。
関連論文リスト
- Enhancing Large Language Models for Mobility Analytics with Semantic Location Tokenization [29.17336622418242]
移動分析のための大規模言語モデル(LLM)を大幅に強化する新しいフレームワークであるQT-Mobを提案する。
QT-Mobは、場所を表すためにコンパクトでセマンティックにリッチなトークンを学ぶ、ロケーショントークン化モジュールを導入した。
3つの実世界のデータセットの実験は、次の位置予測とモビリティ回復タスクの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2025-06-08T02:17:50Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - Mobility-aware Seamless Service Migration and Resource Allocation in Multi-edge IoV Systems [22.33677210691788]
Mobile Edge Computing (MEC)は、IoV(Internet-of-Vehicles)アプリケーションに対する低レイテンシと高帯域幅のサポートを提供する。
MECサーバ間の適切なサービス移行なしに、中断のない高品質なサービスを維持するのは難しい。
既存のソリューションは一般的に事前の知識に依存しており、サービス移行プロセス中に効率的なリソース割り当てを考慮することは滅多にありません。
論文 参考訳(メタデータ) (2025-03-11T07:03:25Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Foundations and Recent Trends in Multimodal Mobile Agents: A Survey [59.419801718418384]
モバイルエージェントは、複雑で動的なモバイル環境におけるタスクの自動化に不可欠である。
近年の進歩により、リアルタイム適応性とマルチモーダルインタラクションが向上している。
これらの進歩は、プロンプトベースの方法とトレーニングベースの方法の2つの主要なアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-04T11:50:58Z) - SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning [14.702694298483445]
Tree-Search Enhanced LLM Agents (SELA)は、Monte Carlo Tree Search (MCTS)を利用してAutoMLプロセスを最適化するエージェントベースのシステムである。
SELAはパイプライン構成をツリーとして表現し、エージェントが知的かつ反復的に戦略を洗練させることを可能にする。
20の機械学習データセットにわたる広範囲な評価において、従来のAutoML手法とエージェントベースのAutoML手法のパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-10-22T17:56:08Z) - Understanding Large Language Models in Your Pockets: Performance Study on COTS Mobile Devices [10.817783356090027]
大規模言語モデル(LLM)は、私たちの仕事や日常生活のあらゆる側面にますます統合されています。
ユーザのプライバシに関する懸念が高まり、これらのモデルがローカルに展開される傾向が強まっている。
急速に普及しているアプリケーションとして、市販のモバイルデバイスのパフォーマンスを懸念しています。
論文 参考訳(メタデータ) (2024-10-04T17:14:59Z) - Dynamic Resource Allocation for Metaverse Applications with Deep
Reinforcement Learning [64.75603723249837]
そこで本研究では,Metaverse アプリケーション用の異なるタイプのリソースを動的に管理・割り当てする新しいフレームワークを提案する。
まず,アプリケーション間で共通関数を共有できるMetaInstancesという,アプリケーションをグループに分割する効果的なソリューションを提案する。
そこで我々は,要求到着プロセスとアプリケーション離脱プロセスのリアルタイム,動的,不確実な特性を捉えるために,セミマルコフ決定プロセスに基づくフレームワークを開発する。
論文 参考訳(メタデータ) (2023-02-27T00:30:01Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Reinforcement Learning-based Dynamic Service Placement in Vehicular
Networks [4.010371060637208]
さまざまなタイプのサービスの要求におけるトラフィックモビリティパターンとダイナミックスの複雑さは、サービスの配置を困難なタスクにしました。
トラフィックモビリティやサービスのダイナミクスを考慮していないため、典型的な静的配置ソリューションは効果的ではありません。
本稿では,エッジサーバに最適なサービス配置を見つけるために,強化学習に基づく動的(RL-Dynamic)サービス配置フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-31T15:01:35Z) - Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows [3.5232085374661284]
本稿では, CVRP-TWDR (Capacitated Vehicle Routing with Time Windows and Dynamic Routing) の一般クラスに対する, 本質的に並列化, 高速, 近似学習に基づくソリューションを開発する。
艦隊内の車両を分散エージェントとして考えると、強化学習(RL)ベースの適応は動的環境におけるリアルタイムルート形成の鍵となると仮定する。
論文 参考訳(メタデータ) (2021-02-24T06:30:16Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。