Stochastic Operator Network: A Stochastic Maximum Principle Based Approach to Operator Learning
- URL: http://arxiv.org/abs/2507.10401v1
- Date: Thu, 10 Jul 2025 19:44:58 GMT
- Title: Stochastic Operator Network: A Stochastic Maximum Principle Based Approach to Operator Learning
- Authors: Ryan Bausback, Jingqiao Tang, Lu Lu, Feng Bao, Toan Huynh,
- Abstract summary: We develop a novel framework for uncertainty quantification in operator learning, the Operator Network (SON)<n>By formulating the branch net as an SDE and backpropagating through the adjoint BSDE, we replace the gradient of the loss function with the gradient of the Hamiltonian from Stohastic Maximum Principle in the SGD update.<n>This allows SON to learn the uncertainty present in operators through its diffusion parameters.
- Score: 2.139298948138063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel framework for uncertainty quantification in operator learning, the Stochastic Operator Network (SON). SON combines the stochastic optimal control concepts of the Stochastic Neural Network (SNN) with the DeepONet. By formulating the branch net as an SDE and backpropagating through the adjoint BSDE, we replace the gradient of the loss function with the gradient of the Hamiltonian from Stohastic Maximum Principle in the SGD update. This allows SON to learn the uncertainty present in operators through its diffusion parameters. We then demonstrate the effectiveness of SON when replicating several noisy operators in 2D and 3D.
Related papers
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points.<n>We introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry.<n>We propose computational strategies that enable both efficient training and fully parameter-free inference.
arXiv Detail & Related papers (2025-07-15T16:33:01Z) - Neural Hamiltonian Operator [2.1756081703276]
An alternative to traditional dynamic programming is Pontryagin's Maximum Principle (PMP), which recasts the problem as a system of Forward-Backward Differential Equations (FBSDEs)<n>In this paper, we introduce a formal framework for solving such problems with deep learning by defining a textbfNeural Hamiltonian Operator (NHO).<n>We show how the optimal NHO can be found by training the underlying networks to enforce the consistency conditions dictated by the PMP.
arXiv Detail & Related papers (2025-07-02T02:56:49Z) - TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training [91.8932638236073]
We introduce textbfTensorGRaD, a novel method that directly addresses the memory challenges associated with large-structured weights.<n>We show that sparseGRaD reduces total memory usage by over $50%$ while maintaining and sometimes even improving accuracy.
arXiv Detail & Related papers (2025-01-04T20:51:51Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks.
We study the problem from a model-based Bayesian reinforcement learning perspective.
We propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function.
arXiv Detail & Related papers (2023-08-12T14:59:19Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning [47.904127007515925]
We study a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction.
We prove that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic approximation guarantees as their counterparts.
Notably, these are the first finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling.
arXiv Detail & Related papers (2023-01-03T04:09:38Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Accelerated replica exchange stochastic gradient Langevin diffusion
enhanced Bayesian DeepONet for solving noisy parametric PDEs [7.337247167823921]
We propose a training framework for replica-exchange Langevin diffusion that exploits the neural network architecture of DeepONets.
We show that the proposed framework's exploration and exploitation capabilities enable improved training convergence for DeepONets in noisy scenarios.
We also show that replica-exchange Langeving Diffusion also improves the DeepONet's mean prediction accuracy in noisy scenarios.
arXiv Detail & Related papers (2021-11-03T19:23:59Z) - Infinitely Deep Bayesian Neural Networks with Stochastic Differential
Equations [37.02511585732081]
We perform scalable approximate inference in a recently-proposed family of continuous-depth neural networks.
We demonstrate gradient-based variational inference, producing arbitrarily-flexible approximate posteriors.
This approach further inherits the memory-efficient training and tunable precision of neural ODEs.
arXiv Detail & Related papers (2021-02-12T14:48:58Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.