論文の概要: Numerically Computing Galois Groups of Minimal Problems
- arxiv url: http://arxiv.org/abs/2507.10407v1
- Date: Mon, 14 Jul 2025 15:53:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.357982
- Title: Numerically Computing Galois Groups of Minimal Problems
- Title(参考訳): 最小問題のガロア群を数値計算する
- Authors: Timothy Duff,
- Abstract要約: 代数学、数値計算、コンピュータビジョンにおけるトピックの関連性について論じる。
動機付けの問題は、代数的(多項式あるいは有理関数)方程式のパラメトリック系の多重例を解くことである。
- 参考スコア(独自算出の注目度): 3.4447129363520332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I discuss a seemingly unlikely confluence of topics in algebra, numerical computation, and computer vision. The motivating problem is that of solving multiples instances of a parametric family of systems of algebraic (polynomial or rational function) equations. No doubt already of interest to ISSAC attendees, this problem arises in the context of robust model-fitting paradigms currently utilized by the computer vision community (namely "Random Sampling and Consensus", aka "RanSaC".) This talk will give an overview of work in the last 5+ years that aspires to measure the intrinsic difficulty of solving such parametric systems, and makes strides towards practical solutions.
- Abstract(参考訳): 代数学、数値計算、コンピュータビジョンにおけるトピックの関連性について論じる。
動機付けの問題は、代数的(多項式あるいは有理関数)方程式のパラメトリック系の多重例を解くことである。
ISSAC参加者にすでに関心があることは間違いないが、この問題は、現在コンピュータビジョンコミュニティで使われている堅牢なモデル適合パラダイム(いわゆる"Random Sampling and Consensus"、別名"RanSaC")の文脈で発生している。この講演は、これらのパラメトリックシステムを解くことの本質的な困難を測り、実践的な解決に向けて努力する上で、過去5年以上の作業の概要を提供する。
関連論文リスト
- OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization [88.76091817642963]
最近の大規模言語モデル (LLMs) は、DeepSeek-R1-のような長い鎖の推論を持ち、オリンピアード級数学において印象的な成果を上げている。
本稿では,3つの分布外一般化の軸を評価するために設計された3つの一般化 Axes-a ベンチマークを用いた OMEGA-Out-of-distriion Math Problems Evaluation を提案する。
論文 参考訳(メタデータ) (2025-06-23T17:51:40Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
計算思考モデル(CTM)は、計算思考パラダイムを大規模言語モデル(LLM)に組み込んだ新しいフレームワークである。
ライブコード実行は推論プロセスにシームレスに統合され、CTMが計算によって考えることができる。
CTMは、精度、解釈可能性、一般化可能性の観点から、従来の推論モデルとツール拡張ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-03T09:11:15Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
本稿では,高品質なオリンピアードレベルの数学問題を自動生成する新しい手法であるPromptCoTを紹介する。
提案手法は,問題構築の背景にある数学的概念と理論的根拠に基づいて複雑な問題を合成する。
提案手法は, GSM8K, MATH-500, AIME2024などの標準ベンチマークで評価され, 既存の問題生成手法を一貫して上回っている。
論文 参考訳(メタデータ) (2025-03-04T06:32:30Z) - Explicit Solution Equation for Every Combinatorial Problem via Tensor Networks: MeLoCoToN [55.2480439325792]
計算問題はすべて、解を返却する厳密な明示的な方程式を持つことを示す。
本稿では, インバージョン, 制約満足度, 最適化の両面から, 正確に任意の問題を解く方程式を得る方法を提案する。
論文 参考訳(メタデータ) (2025-02-09T18:16:53Z) - A new family of ladder operators for macroscopic systems, with applications [0.0]
巨視的領域におけるボソニックおよびフェルミオンラグ演算子の役割について検討した。
また,いくつかのはしご演算子に基づく代替手法を提案するが,解析解を特別な困難を伴わずに導出できる場合が多い。
論文 参考訳(メタデータ) (2024-11-05T07:41:08Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
本研究では,高品質な数学問題を大規模に合成する手法であるMath CAMPSを提案する。
それぞれの標準を形式文法でエンコードし、様々な記号問題とその解をサンプリングする。
我々は、記号構造からフォローアップ質問を導き、それらをフォローアップ単語問題に変換する。
論文 参考訳(メタデータ) (2024-07-01T01:56:28Z) - Symbolic Equation Solving via Reinforcement Learning [9.361474110798143]
シンボリックスタック計算機を操作する強化学習エージェントを含む新しい深層学習インタフェースを提案する。
構築によって、このシステムは正確な変換と幻覚への免疫が可能である。
論文 参考訳(メタデータ) (2024-01-24T13:42:24Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
大規模言語モデル(LLM)は、人間レベルの推論と生成能力に顕著な習熟性を示している。
G-LLaVAは幾何学的問題の解法において例外的な性能を示し、7Bパラメータしか持たないMathVistaベンチマークにおいて GPT-4-V を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-18T17:36:20Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
この作業は、Answer Set Programmingのためのモデルベースのアプローチの学習フレームワークと実装を拡張します。
Inductive Logic Programming System ILASPに新たなコンフリクト解析アルゴリズムを組み込む。
論文 参考訳(メタデータ) (2022-05-14T20:42:13Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。