Privacy-Preserving Multi-Stage Fall Detection Framework with Semi-supervised Federated Learning and Robotic Vision Confirmation
- URL: http://arxiv.org/abs/2507.10474v1
- Date: Mon, 14 Jul 2025 16:55:11 GMT
- Title: Privacy-Preserving Multi-Stage Fall Detection Framework with Semi-supervised Federated Learning and Robotic Vision Confirmation
- Authors: Seyed Alireza Rahimi Azghadi, Truong-Thanh-Hung Nguyen, Helene Fournier, Monica Wachowicz, Rene Richard, Francis Palma, Hung Cao,
- Abstract summary: We propose a framework for detecting falls using several complementary systems.<n>A wearable device and an edge device identify a fall scenario in the first system.<n>A vision-based detection system running on an edge device with a mounted camera on a robot is used to recognize fallen people.
- Score: 1.8637109806158185
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The aging population is growing rapidly, and so is the danger of falls in older adults. A major cause of injury is falling, and detection in time can greatly save medical expenses and recovery time. However, to provide timely intervention and avoid unnecessary alarms, detection systems must be effective and reliable while addressing privacy concerns regarding the user. In this work, we propose a framework for detecting falls using several complementary systems: a semi-supervised federated learning-based fall detection system (SF2D), an indoor localization and navigation system, and a vision-based human fall recognition system. A wearable device and an edge device identify a fall scenario in the first system. On top of that, the second system uses an indoor localization technique first to localize the fall location and then navigate a robot to inspect the scenario. A vision-based detection system running on an edge device with a mounted camera on a robot is used to recognize fallen people. Each of the systems of this proposed framework achieves different accuracy rates. Specifically, the SF2D has a 0.81% failure rate equivalent to 99.19% accuracy, while the vision-based fallen people detection achieves 96.3% accuracy. However, when we combine the accuracy of these two systems with the accuracy of the navigation system (95% success rate), our proposed framework creates a highly reliable performance for fall detection, with an overall accuracy of 99.99%. Not only is the proposed framework safe for older adults, but it is also a privacy-preserving solution for detecting falls.
Related papers
- Computationally efficient non-Intrusive pre-impact fall detection system [3.686808512438363]
Existing pre-impact fall detection systems have high accuracy, however they are either intrusive to the subject or require heavy computational resources for fall detection.<n>In this work we present a Pre-impact fall detection system that is both non-intrusive and computationally efficient at deployment.
arXiv Detail & Related papers (2025-07-04T16:41:10Z) - ElderFallGuard: Real-Time IoT and Computer Vision-Based Fall Detection System for Elderly Safety [0.0]
ElderFallGuard is a vision-based IoT solution to enhance elderly safety and provide peace of mind for caregivers through intelligent, timely alerts.<n>The system instantly dispatches an alert, including a snapshot of the event, to a designated Telegram group via a custom bot, incorporating logic to prevent notification overload. Rigorous testing on our dataset demonstrated exceptional results, achieving 100% accuracy, precision, recall, and F1-score.
arXiv Detail & Related papers (2025-05-17T05:09:47Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - Detecting and Mitigating System-Level Anomalies of Vision-Based Controllers [7.095058159492494]
Vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs.
In this work, we introduce a run-time anomaly monitor to detect and mitigate such closed-loop, system-level failures.
We validate the proposed approach on an autonomous aircraft taxiing system that uses a vision-based controller for taxiing.
arXiv Detail & Related papers (2023-09-23T20:33:38Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - BlockTheFall: Wearable Device-based Fall Detection Framework Powered by
Machine Learning and Blockchain for Elderly Care [0.44739156031315913]
"BlockTheFall," a wearable device-based fall detection framework, detects falls in real time by using sensor data from wearable devices.
The collected sensor data is analyzed using machine learning algorithms.
The proposed framework stores and verifies fall event data using blockchain technology.
arXiv Detail & Related papers (2023-06-10T14:18:44Z) - Monocular 2D Camera-based Proximity Monitoring for Human-Machine
Collision Warning on Construction Sites [1.7223564681760168]
Accident of struck-by machines is one of the leading causes of casualties on construction sites.
Monitoring workers' proximities to avoid human-machine collisions has aroused great concern in construction safety management.
This study proposes a novel framework for proximity monitoring using only an ordinary 2D camera to realize real-time human-machine collision warning.
arXiv Detail & Related papers (2023-05-29T07:47:27Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.