Meta-Reinforcement Learning for Fast and Data-Efficient Spectrum Allocation in Dynamic Wireless Networks
- URL: http://arxiv.org/abs/2507.10619v1
- Date: Sun, 13 Jul 2025 21:29:39 GMT
- Title: Meta-Reinforcement Learning for Fast and Data-Efficient Spectrum Allocation in Dynamic Wireless Networks
- Authors: Oluwaseyi Giwa, Tobi Awodunmila, Muhammad Ahmed Mohsin, Ahsan Bilal, Muhammad Ali Jamshed,
- Abstract summary: Dynamic allocation of spectrum in 5G / 6G networks is critical to efficient resource utilization.<n>Applying traditional deep reinforcement learning (DRL) is often infeasible due to its immense sample complexity.<n>We propose a meta-learning framework that enables agents to learn a robust initial policy and rapidly adapt to new wireless scenarios.
- Score: 1.2940734305933084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamic allocation of spectrum in 5G / 6G networks is critical to efficient resource utilization. However, applying traditional deep reinforcement learning (DRL) is often infeasible due to its immense sample complexity and the safety risks associated with unguided exploration, which can cause severe network interference. To address these challenges, we propose a meta-learning framework that enables agents to learn a robust initial policy and rapidly adapt to new wireless scenarios with minimal data. We implement three meta-learning architectures, model-agnostic meta-learning (MAML), recurrent neural network (RNN), and an attention-enhanced RNN, and evaluate them against a non-meta-learning DRL algorithm, proximal policy optimization (PPO) baseline, in a simulated dynamic integrated access/backhaul (IAB) environment. Our results show a clear performance gap. The attention-based meta-learning agent reaches a peak mean network throughput of 48 Mbps, while the PPO baseline decreased drastically to 10 Mbps. Furthermore, our method reduces SINR and latency violations by more than 50% compared to PPO. It also shows quick adaptation, with a fairness index 0.7, showing better resource allocation. This work proves that meta-learning is a very effective and safer option for intelligent control in complex wireless systems.
Related papers
- Multi-Agent Reinforcement Learning for Sample-Efficient Deep Neural Network Mapping [54.65536245955678]
We present a decentralized multi-agent reinforcement learning (MARL) framework designed to overcome the challenge of sample inefficiency.<n>We introduce an agent clustering algorithm that assigns similar mapping parameters to the same agents based on correlation analysis.<n> Experimental results show our MARL approach improves sample efficiency by 30-300x over standard single-agent RL.
arXiv Detail & Related papers (2025-07-22T05:51:07Z) - Learning to Control Dynamical Agents via Spiking Neural Networks and Metropolis-Hastings Sampling [1.0533738606966752]
Spiking Neural Networks (SNNs) offer biologically inspired, energy-efficient alternatives to traditional Deep Neural Networks (DNNs) for real-time control systems.<n>We introduce what is, to our knowledge, the first framework that employs Metropolis-Hastings sampling, a Bayesian inference technique, to train SNNs for dynamical agent control in RL environments.
arXiv Detail & Related papers (2025-07-13T08:50:00Z) - Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning [57.3885832382455]
We show that introducing static network sparsity alone can unlock further scaling potential beyond dense counterparts with state-of-the-art architectures.<n>Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity.
arXiv Detail & Related papers (2025-06-20T17:54:24Z) - FedMSE: Semi-supervised federated learning approach for IoT network intrusion detection [0.0]
The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation.<n>A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN)<n>This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy.
arXiv Detail & Related papers (2024-10-18T02:23:57Z) - Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) addresses the variable demands of modern networks with unprecedented efficiency and adaptability.
This paper proposes a novel Meta Deep Reinforcement Learning (Meta-DRL) strategy, inspired by Model-Agnostic Meta-Learning (MAML) to advance resource block and downlink power allocation in O-RAN.
arXiv Detail & Related papers (2024-09-30T23:04:30Z) - Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
arXiv Detail & Related papers (2024-07-25T07:24:41Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
Mobile edge computing (MEC) considered a novel paradigm for computation and delay-sensitive tasks in fifth generation (5G) networks and beyond.
This paper provides a comprehensive research review on free-enabled RL and offers insight for development.
arXiv Detail & Related papers (2022-01-27T10:02:54Z) - Dynamic Channel Access via Meta-Reinforcement Learning [0.8223798883838329]
We propose a meta-DRL framework that incorporates the method of Model-Agnostic Meta-Learning (MAML)
We show that only a few gradient descents are required for adapting to different tasks drawn from the same distribution.
arXiv Detail & Related papers (2021-12-24T15:04:43Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
A drone base station (DBS) is dispatched to provide uplink connectivity to ground users whose demand is dynamic and unpredictable.
In this case, the DBS's trajectory must be adaptively adjusted to satisfy the dynamic user access requests.
A meta-learning algorithm is proposed in order to adapt the DBS's trajectory when it encounters novel environments.
arXiv Detail & Related papers (2020-05-25T20:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.