論文の概要: Enhancing the Capabilities of Large Language Models for API calls through Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2507.10630v1
- Date: Mon, 14 Jul 2025 08:20:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.796619
- Title: Enhancing the Capabilities of Large Language Models for API calls through Knowledge Graphs
- Title(参考訳): 知識グラフによるAPI呼び出しのための大規模言語モデルの能力向上
- Authors: Ye Yang, Xue Xiao, Ping Yin, Taotao Xie,
- Abstract要約: KG2dataは知識グラフ、大規模言語モデル(LLM)、ReActエージェント、ツール利用技術を統合するシステムである。
仮想APIを使用することで、名前認識障害、幻覚障害、呼び出しの正確性という3つの指標でAPIコールの精度を評価する。
KG2data は RAG2data (16%, 10%, 72.14%) や chat2data (7.14%, 8.57%, 71.43%) に比べて優れたパフォーマンスを実現している(1.43%, 0%, 88.57%)。
- 参考スコア(独自算出の注目度): 1.6691048566825868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: API calls by large language models (LLMs) offer a cutting-edge approach for data analysis. However, their ability to effectively utilize tools via API calls remains underexplored in knowledge-intensive domains like meteorology. This paper introduces KG2data, a system that integrates knowledge graphs, LLMs, ReAct agents, and tool-use technologies to enable intelligent data acquisition and query handling in the meteorological field. Using a virtual API, we evaluate API call accuracy across three metrics: name recognition failure, hallucination failure, and call correctness. KG2data achieves superior performance (1.43%, 0%, 88.57%) compared to RAG2data (16%, 10%, 72.14%) and chat2data (7.14%, 8.57%, 71.43%). KG2data differs from typical LLM-based systems by addressing their limited access to domain-specific knowledge, which hampers performance on complex or terminology-rich queries. By using a knowledge graph as persistent memory, our system enhances content retrieval, complex query handling, domain-specific reasoning, semantic relationship resolution, and heterogeneous data integration. It also mitigates the high cost of fine-tuning LLMs, making the system more adaptable to evolving domain knowledge and API structures. In summary, KG2data provides a novel solution for intelligent, knowledge-based question answering and data analysis in domains with high knowledge demands.
- Abstract(参考訳): 大規模言語モデル(LLM)によるAPI呼び出しは、データ分析に最先端のアプローチを提供する。
しかし、API呼び出しを通じてツールを効果的に活用する能力は、気象学のような知識集約的な領域では、まだ探索されていない。
本稿では,知識グラフ,LLM,ReActエージェント,ツール利用技術を統合し,気象分野におけるインテリジェントなデータ取得とクエリ処理を可能にするシステムであるKG2dataを紹介する。
仮想APIを使用することで、名前認識障害、幻覚障害、呼び出しの正確性という3つの指標でAPIコールの精度を評価する。
KG2data は RAG2data (16%, 10%, 72.14%) や chat2data (7.14%, 8.57%, 71.43%) と比較すると、優れたパフォーマンス(1.43%, 0%, 88.57%)を達成している。
KG2dataは、複雑なクエリや用語に富んだクエリのパフォーマンスを損なうような、ドメイン固有の知識への限られたアクセスに対処することで、典型的なLLMベースのシステムとは異なる。
知識グラフを永続記憶として使用することにより,コンテンツ検索,複雑なクエリ処理,ドメイン固有の推論,セマンティックリレーションの解決,異種データ統合が強化される。
また、微調整 LLM の高コストを軽減し、ドメイン知識やAPI構造を進化させやすくする。
要約すると、KG2dataは知的な知識に基づく質問応答と、高い知識要求のあるドメインにおけるデータ分析のための、新しいソリューションを提供する。
関連論文リスト
- SPARQL Query Generation with LLMs: Measuring the Impact of Training Data Memorization and Knowledge Injection [81.78173888579941]
大規模言語モデル(LLM)は、質問応答機能の品質を高めるのに適した方法と考えられている。
LLMはWebデータに基づいてトレーニングされており、ベンチマークや知識グラフがトレーニングデータに含まれているかどうかを研究者は制御できない。
本稿では,自然言語質問からSPARQLクエリを生成し,LLMの品質を評価する手法を提案する。
論文 参考訳(メタデータ) (2025-07-18T12:28:08Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
大規模言語モデル(LLM)は、汎用自然言語処理タスクにおいて大きな進歩を遂げている。
本稿では,知識グラフ(KG)と検索拡張生成(RAG)技術を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-31T15:58:08Z) - Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) にドメイン知識を組み込む重要な手法として登場した。
本稿では,学習データを2つの方法で強化することで,微調整プロセスを大幅に強化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T12:39:51Z) - Augmented Knowledge Graph Querying leveraging LLMs [2.5311562666866494]
我々は、知識グラフ(KG)のクエリを強化するフレームワークであるSparqLLMを紹介する。
SparqLLMは、生データからKGを構築するために、Extract, Transform, and Load (ETL)パイプラインを実行する。
また、Large Language Models(LLMs)を利用した自然言語インターフェースを備え、自動SPARQLクエリ生成を実現している。
論文 参考訳(メタデータ) (2025-02-03T12:18:39Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
大規模言語モデル(LLM)は大規模コーパスで事前訓練されている。
LLMは幻覚、知識の遮断、知識の帰属の欠如に悩まされる。
SMART-SLICはドメイン固有のLLMフレームワークである。
論文 参考訳(メタデータ) (2024-10-03T17:40:55Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - Unearthing Large Scale Domain-Specific Knowledge from Public Corpora [103.0865116794534]
データ収集パイプラインに大規模なモデルを導入し、ドメイン固有の情報の生成をガイドします。
このアプローチをRetrieve-from-CCと呼ぶ。
ドメイン固有の知識に関するデータを収集するだけでなく、パブリックコーパスから潜在的推論手順を含むデータをマイニングする。
論文 参考訳(メタデータ) (2024-01-26T03:38:23Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph
through AI Chain [21.27256145010061]
本稿では,APIレコメンデーションのための知識誘導型クエリ明確化手法を提案する。
我々は、知識グラフ(KG)によって導かれる大きな言語モデル(LLM)を用いて、語彙外障害(OOV)を克服する。
我々のアプローチは、5つのステップからなるAIチェーンとして設計されており、それぞれが別々のLLMコールによって処理される。
論文 参考訳(メタデータ) (2023-09-28T03:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。