論文の概要: Augmented Knowledge Graph Querying leveraging LLMs
- arxiv url: http://arxiv.org/abs/2502.01298v1
- Date: Mon, 03 Feb 2025 12:18:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:54.74317
- Title: Augmented Knowledge Graph Querying leveraging LLMs
- Title(参考訳): LLMを利用したAugmented Knowledge Graph Querying
- Authors: Marco Arazzi, Davide Ligari, Serena Nicolazzo, Antonino Nocera,
- Abstract要約: 我々は、知識グラフ(KG)のクエリを強化するフレームワークであるSparqLLMを紹介する。
SparqLLMは、生データからKGを構築するために、Extract, Transform, and Load (ETL)パイプラインを実行する。
また、Large Language Models(LLMs)を利用した自然言語インターフェースを備え、自動SPARQLクエリ生成を実現している。
- 参考スコア(独自算出の注目度): 2.5311562666866494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adopting Knowledge Graphs (KGs) as a structured, semantic-oriented, data representation model has significantly improved data integration, reasoning, and querying capabilities across different domains. This is especially true in modern scenarios such as Industry 5.0, in which the integration of data produced by humans, smart devices, and production processes plays a crucial role. However, the management, retrieval, and visualization of data from a KG using formal query languages can be difficult for non-expert users due to their technical complexity, thus limiting their usage inside industrial environments. For this reason, we introduce SparqLLM, a framework that utilizes a Retrieval-Augmented Generation (RAG) solution, to enhance the querying of Knowledge Graphs (KGs). SparqLLM executes the Extract, Transform, and Load (ETL) pipeline to construct KGs from raw data. It also features a natural language interface powered by Large Language Models (LLMs) to enable automatic SPARQL query generation. By integrating template-based methods as retrieved-context for the LLM, SparqLLM enhances query reliability and reduces semantic errors, ensuring more accurate and efficient KG interactions. Moreover, to improve usability, the system incorporates a dynamic visualization dashboard that adapts to the structure of the retrieved data, presenting the query results in an intuitive format. Rigorous experimental evaluations demonstrate that SparqLLM achieves high query accuracy, improved robustness, and user-friendly interaction with KGs, establishing it as a scalable solution to access semantic data.
- Abstract(参考訳): 構造化されたセマンティック指向のデータ表現モデルとしての知識グラフ(KG)の採用は、さまざまなドメインにわたるデータ統合、推論、クエリ機能を大幅に改善した。
これは、人間、スマートデバイス、生産プロセスによって生成されるデータの統合が重要な役割を果たす産業5.0のような現代のシナリオにおいて特に当てはまる。
しかし、形式的なクエリ言語を用いたKGからのデータの管理、検索、視覚化は、技術的複雑さのため、専門家でないユーザにとっては難しいため、産業環境内での使用を制限することができる。
このため、我々は、知識グラフ(KG)のクエリを強化するために、検索型拡張生成(RAG)ソリューションを利用するフレームワークであるSparqLLMを紹介した。
SparqLLMは、生データからKGを構築するために、Extract, Transform, and Load (ETL)パイプラインを実行する。
また、Large Language Models(LLMs)を利用した自然言語インターフェースを備え、自動SPARQLクエリ生成を実現している。
LLMの検索コンテキストとしてテンプレートベースのメソッドを統合することで、SparqLLMはクエリの信頼性を高め、セマンティックエラーを低減し、より正確で効率的なKGインタラクションを実現する。
さらに、ユーザビリティを向上させるために、検索したデータの構造に適応し、クエリ結果を直感的なフォーマットで提示する動的視覚化ダッシュボードが組み込まれている。
厳密な実験的評価により、SparqLLMは高いクエリ精度、堅牢性の向上、ユーザフレンドリなKGとのインタラクションを実現し、セマンティックデータにアクセスするスケーラブルなソリューションとして確立されている。
関連論文リスト
- Simplifying Data Integration: SLM-Driven Systems for Unified Semantic Queries Across Heterogeneous Databases [0.0]
本稿では,Small Language Model(SLM)をベースとした,軽量な検索・拡張生成(RAG)とセマンティック・アウェアなデータ構造化の進歩を相乗化するシステムを提案する。
SLMを用いた構造化データ抽出にMiniRAGのセマンティック・アウェア・ヘテロジニアス・グラフインデックスとトポロジ・エンハンス・検索を統合し,従来の手法の限界に対処する。
実験結果は精度と効率性において優れた性能を示し、教師なし評価指標としてのセマンティックエントロピーの導入はモデルの不確実性に対する堅牢な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-08T03:28:03Z) - LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
大きな言語モデル(LLM)は、テキスト理解とゼロショット推論において素晴らしい能力を持っている。
知識グラフ(KG)は、LLMの推論プロセスに対して、リッチで信頼性の高いコンテキスト情報を提供する。
我々は、KGQA(LightPROF)のための新しい軽量で効率的なPrompt Learning-ReasOning Frameworkを提案する。
論文 参考訳(メタデータ) (2025-04-04T03:03:47Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
大規模言語モデル(LLM)は、汎用自然言語処理タスクにおいて大きな進歩を遂げている。
本稿では,知識グラフ(KG)と検索拡張生成(RAG)技術を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-31T15:58:08Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG)フレームワークはメタパス検索、イングラフテキスト、ベクトル検索を大規模言語モデルに統合する。
PKGはより豊かな知識表現を提供し、情報検索の精度を向上させる。
論文 参考訳(メタデータ) (2025-03-01T02:39:37Z) - G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation [48.23263809469786]
本稿では,グラフ検索拡張大言語モデル (LLM) を用いた提案手法を提案する。
G-Referは、説明可能性と安定性の両方において既存の手法と比較して優れた性能を達成する。
論文 参考訳(メタデータ) (2025-02-18T06:42:38Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG [3.8704987495086542]
TOBUGraphは、構造化されていないデータから知識グラフを構築するグラフベースの検索フレームワークである。
構造化された知識とデータ間の多様な関係を抽出し、RAGのテキストとテキストの類似性を超えた。
ToBUGraphの有効性を実証する。TOBUは、個人記憶の組織化と検索のための実世界のアプリケーションである。
論文 参考訳(メタデータ) (2024-12-06T22:05:39Z) - Leveraging LLM for Automated Ontology Extraction and Knowledge Graph Generation [3.2513035377783717]
OntoKGenは、オントロジー抽出と知識グラフ生成のための真のパイプラインである。
OntoKGenは、Neo4jのようなスキーマレスで非リレーショナルなデータベースへのシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2024-11-30T23:11:44Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-guided Retrieval Augmented Generation [14.448198170932226]
Think-on-Graph 2.0 (ToG-2) は、構造化されていない知識ソースと構造化されていない知識ソースの両方から情報を反復的に取得するハイブリッドRAGフレームワークである。
ToG-2は、グラフ検索とコンテキスト検索の交互に、質問に関連する詳細な手がかりを検索する。
GPT-3.5で7つの知識集約データセットのうち6つで、全体的なSOTA(State-of-the-art)のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-07-15T15:20:40Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
論文 参考訳(メタデータ) (2024-02-17T02:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。