ZClassifier: Temperature Tuning and Manifold Approximation via KL Divergence on Logit Space
- URL: http://arxiv.org/abs/2507.10638v2
- Date: Thu, 17 Jul 2025 06:11:45 GMT
- Title: ZClassifier: Temperature Tuning and Manifold Approximation via KL Divergence on Logit Space
- Authors: Shim Soon Yong,
- Abstract summary: We introduce a novel classification framework, ZClassifier, that replaces conventional deterministic logits with diagonal Gaussian-distributed logits.<n>Our method simultaneously addresses temperature scaling and manifold approximation by minimizing the Kullback-Leibler divergence between the predicted Gaussian distributions and a unit isotropic Gaussian.<n>This uncertainty unifies calibration and latent control in a principled probabilistic manner, enabling a natural interpretation of class confidence and geometric consistency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel classification framework, ZClassifier, that replaces conventional deterministic logits with diagonal Gaussian-distributed logits. Our method simultaneously addresses temperature scaling and manifold approximation by minimizing the Kullback-Leibler (KL) divergence between the predicted Gaussian distributions and a unit isotropic Gaussian. This unifies uncertainty calibration and latent control in a principled probabilistic manner, enabling a natural interpretation of class confidence and geometric consistency. Experiments on CIFAR-10 show that ZClassifier improves over softmax classifiers in robustness, calibration, and latent separation.
Related papers
- A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs [52.55025869932486]
This paper introduces a promising alternative method for training Generative Adversarial Networks (GANs) on large-scale datasets with clear theoretical guarantees.<n>We propose a novel Lipschitz-constrained Functional Gradient GANs learning (Li-CFG) method to stabilize the training of GAN.<n>We demonstrate that the neighborhood size of the latent vector can be reduced by increasing the norm of the discriminator gradient.
arXiv Detail & Related papers (2025-01-20T02:48:07Z) - Semi-Implicit Functional Gradient Flow for Efficient Sampling [30.32233517392456]
We propose a functional gradient ParVI method that uses perturbed particles with Gaussian noise as the approximation family.<n>We show that the corresponding functional gradient flow, which can be estimated via denoising score matching with neural networks, exhibits strong theoretical convergence guarantees.<n>In addition, we present an adaptive version of our method that automatically selects the appropriate noise magnitude during sampling.
arXiv Detail & Related papers (2024-10-23T15:00:30Z) - Classifier Calibration with ROC-Regularized Isotonic Regression [0.0]
We use isotonic regression to minimize the cross entropy on a calibration set via monotone transformations.
IR acts as an adaptive binning procedure, which allows achieving a calibration error of zero, but leaves open the issue of the effect on performance.
We show empirically that this general monotony criterion is effective in striking a balance between reducing cross entropy loss and avoiding overfitting of the calibration set.
arXiv Detail & Related papers (2023-11-21T08:45:09Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model:
A new take on Robust Interpolation [5.98367009147573]
We study the supervised clustering problem under the two-component anisotropic Gaussian mixture model.
We show that in the high-dimensional regime, the linear discriminant analysis (LDA) classifier turns out to be sub-optimal in the minimax sense.
arXiv Detail & Related papers (2021-11-13T05:19:37Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.