GenAI-Enabled Backlog Grooming in Agile Software Projects: An Empirical Study
- URL: http://arxiv.org/abs/2507.10753v1
- Date: Mon, 14 Jul 2025 19:22:57 GMT
- Title: GenAI-Enabled Backlog Grooming in Agile Software Projects: An Empirical Study
- Authors: Kasper Lien Oftebro, Anh Nguyen-Duc, Kai-Kristian Kemell,
- Abstract summary: This study investigates whether a generative-AI (GenAI) assistant can automate backlog grooming in Agile software projects without sacrificing accuracy or transparency.<n>We developed a Jira plug-in that embeds backlog issues with the vector database, detects duplicates via cosine similarity, and leverage the GPT-4o model to propose merges, deletions, or new issues.
- Score: 2.9073118555228232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective backlog management is critical for ensuring that development teams remain aligned with evolving requirements and stakeholder expectations. However, as product backlogs consistently grow in scale and complexity, they tend to become cluttered with redundant, outdated, or poorly defined tasks, complicating prioritization and decision making processes. This study investigates whether a generative-AI (GenAI) assistant can automate backlog grooming in Agile software projects without sacrificing accuracy or transparency. Through Design Science cycles, we developed a Jira plug-in that embeds backlog issues with the vector database, detects duplicates via cosine similarity, and leverage the GPT-4o model to propose merges, deletions, or new issues. We found that AI-assisted backlog grooming achieved 100 percent precision while reducing the time-to-completion by 45 percent. The findings demonstrated the tool's potential to streamline backlog refinement processes while improving user experiences.
Related papers
- Augmenting Large Language Models with Static Code Analysis for Automated Code Quality Improvements [0.36832029288386137]
This study examined code issue detection and revision automation by integrating Large Language Models (LLMs) into software development.<n>A static code analysis framework detects issues such as bugs, vulnerabilities, and code smells within a large-scale software project.<n>Retrieval-augmented generation (RAG) is implemented to enhance the relevance and precision of the revisions.
arXiv Detail & Related papers (2025-06-12T03:39:25Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation.<n>We analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI.
arXiv Detail & Related papers (2025-06-02T12:43:08Z) - R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution [60.80016554091364]
R&D-Agent is a dual-agent framework for iterative exploration.<n>The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback.<n>R&D-Agent is evaluated on MLE-Bench and emerges as the top-performing machine learning engineering agent.
arXiv Detail & Related papers (2025-05-20T06:07:00Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPT series learns from and simulating real-world code submission activities.
Lingma SWE-GPT 72B resolves 30.20% of GitHub issues, marking a significant improvement in automatic issue resolution.
arXiv Detail & Related papers (2024-11-01T14:27:16Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
We propose an automated approach for solving GitHub issues to autonomously achieve program improvement.
In our approach called AutoCodeRover, LLMs are combined with sophisticated code search capabilities, ultimately leading to a program modification or patch.
Experiments on SWE-bench-lite (300 real-life GitHub issues) show increased efficacy in solving GitHub issues (19% on SWE-bench-lite), which is higher than the efficacy of the recently reported SWE-agent.
arXiv Detail & Related papers (2024-04-08T11:55:09Z) - Automated User Story Generation with Test Case Specification Using Large Language Model [0.0]
We developed a tool "GeneUS" to automatically create user stories from requirements documents.
The output is provided in format leaving the possibilities open for downstream integration to the popular project management tools.
arXiv Detail & Related papers (2024-04-02T01:45:57Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI (GenAI) has fundamentally changed how knowledge workers, such as software developers, solve tasks and collaborate to build software products.
Introducing innovative tools like ChatGPT and Copilot has created new opportunities to assist and augment software developers across various problems.
Our study reveals that ChatGPT signifies a paradigm shift in the workflow of software developers. The technology empowers developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks.
arXiv Detail & Related papers (2024-02-12T12:36:29Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.