Winsor-CAM: Human-Tunable Visual Explanations from Deep Networks via Layer-Wise Winsorization
- URL: http://arxiv.org/abs/2507.10846v1
- Date: Mon, 14 Jul 2025 22:37:31 GMT
- Title: Winsor-CAM: Human-Tunable Visual Explanations from Deep Networks via Layer-Wise Winsorization
- Authors: Casey Wall, Longwei Wang, Rodrigue Rizk, KC Santosh,
- Abstract summary: We propose Winsor-CAM, a novel, human-tunable extension of Grad-CAM that generates robust and coherent saliency maps.<n>To mitigate the influence of noisy or extreme attribution values, Winsor-CAM applies Winsorization, a percentile-based outlier attenuation technique.<n>We show that Winsor-CAM produces more interpretable heatmaps and achieves superior performance in localization metrics.
- Score: 3.2338088176151825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpreting the decision-making process of Convolutional Neural Networks (CNNs) is critical for deploying models in high-stakes domains. Gradient-weighted Class Activation Mapping (Grad-CAM) is a widely used method for visual explanations, yet it typically focuses on the final convolutional layer or na\"ively averages across layers, strategies that can obscure important semantic cues or amplify irrelevant noise. We propose Winsor-CAM, a novel, human-tunable extension of Grad-CAM that generates robust and coherent saliency maps by aggregating information across all convolutional layers. To mitigate the influence of noisy or extreme attribution values, Winsor-CAM applies Winsorization, a percentile-based outlier attenuation technique. A user-controllable threshold allows for semantic-level tuning, enabling flexible exploration of model behavior across representational hierarchies. Evaluations on standard architectures (ResNet50, DenseNet121, VGG16, InceptionV3) using the PASCAL VOC 2012 dataset demonstrate that Winsor-CAM produces more interpretable heatmaps and achieves superior performance in localization metrics, including intersection-over-union and center-of-mass alignment, when compared to Grad-CAM and uniform layer-averaging baselines. Winsor-CAM advances the goal of trustworthy AI by offering interpretable, multi-layer insights with human-in-the-loop control.
Related papers
- Integrative CAM: Adaptive Layer Fusion for Comprehensive Interpretation of CNNs [2.58561853556421]
Integrative CAM provides a holistic view of feature importance across Convolutional Neural Networks (CNNs)<n>Traditional gradient-based CAM methods, such as Grad-CAM and Grad-CAM++, primarily use final layer activations to highlight regions of interest.<n>We generalize the alpha term from Grad-CAM++ to apply to any smooth function, expanding CAM applicability across a wider range of models.
arXiv Detail & Related papers (2024-12-02T10:33:34Z) - Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - TOPIQ: A Top-down Approach from Semantics to Distortions for Image
Quality Assessment [53.72721476803585]
Image Quality Assessment (IQA) is a fundamental task in computer vision that has witnessed remarkable progress with deep neural networks.
We propose a top-down approach that uses high-level semantics to guide the IQA network to focus on semantically important local distortion regions.
A key component of our approach is the proposed cross-scale attention mechanism, which calculates attention maps for lower level features.
arXiv Detail & Related papers (2023-08-06T09:08:37Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - Recipro-CAM: Gradient-free reciprocal class activation map [0.0]
We propose a lightweight architecture and gradient free Reciprocal CAM (Recipro-CAM) to exploit the correlation between activation maps and network outputs.
With the proposed method, we achieved the gains of 1:78 - 3:72% in the ResNet family compared to Score-CAM.
In addition, Recipro-CAM exhibits a saliency map generation rate similar to Grad-CAM and approximately 148 times faster than Score-CAM.
arXiv Detail & Related papers (2022-09-28T13:15:03Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - SSA: Semantic Structure Aware Inference for Weakly Pixel-Wise Dense
Predictions without Cost [36.27226683586425]
The semantic structure aware inference (SSA) is proposed to explore the semantic structure information hidden in different stages of the CNN-based network to generate high-quality CAM in the model inference.
The proposed method has the advantage of no parameters and does not need to be trained. Therefore, it can be applied to a wide range of weakly-supervised pixel-wise dense prediction tasks.
arXiv Detail & Related papers (2021-11-05T11:07:21Z) - Unifying Global-Local Representations in Salient Object Detection with Transformer [55.23033277636774]
We introduce a new attention-based encoder, vision transformer, into salient object detection.
With the global view in very shallow layers, the transformer encoder preserves more local representations.
Our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks.
arXiv Detail & Related papers (2021-08-05T17:51:32Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.