論文の概要: GALDS: A Graph-Autoencoder-based Latent Dynamics Surrogate model to predict neurite material transport
- arxiv url: http://arxiv.org/abs/2507.10871v1
- Date: Tue, 15 Jul 2025 00:22:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.926219
- Title: GALDS: A Graph-Autoencoder-based Latent Dynamics Surrogate model to predict neurite material transport
- Title(参考訳): GALDS: グラフオートエンコーダを用いた潜在ダイナミクスサーロゲートモデルによる神経質物質輸送の予測
- Authors: Tsung Yeh Hsieh, Yongjie Jessica Zhang,
- Abstract要約: 本稿では,ニューラルツリー内の物質輸送シミュレーションを効率化するグラフオートコーダを用いたレイトタント・ダイナミクス・サロゲートモデルを提案する。
提案手法は, 最大相対誤差8%で平均相対誤差3%を達成し, 従来のサロゲートモデルに比べて10倍の速度向上を示した。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neurons exhibit intricate geometries within their neurite networks, which play a crucial role in processes such as signaling and nutrient transport. Accurate simulation of material transport in the networks is essential for understanding these biological phenomena but poses significant computational challenges because of the complex tree-like structures involved. Traditional approaches are time-intensive and resource-demanding, yet the inherent properties of neuron trees, which consists primarily of pipes with steady-state parabolic velocity profiles and bifurcations, provide opportunities for computational optimization. To address these challenges, we propose a Graph-Autoencoder-based Latent Dynamics Surrogate (GALDS) model, which is specifically designed to streamline the simulation of material transport in neural trees. GALDS employs a graph autoencoder to encode latent representations of the network's geometry, velocity fields, and concentration profiles. These latent space representations are then assembled into a global graph, which is subsequently used to predict system dynamics in the latent space via a trained graph latent space system dynamic model, inspired by the Neural Ordinary Differential Equations (Neural ODEs) concept. The integration of an autoencoder allows for the use of smaller graph neural network models with reduced training data requirements. Furthermore, the Neural ODE component effectively mitigates the issue of error accumulation commonly encountered in recurrent neural networks. The effectiveness of the GALDS model is demonstrated through results on eight unseen geometries and four abnormal transport examples, where our approach achieves mean relative error of 3% with maximum relative error <8% and demonstrates a 10-fold speed improvement compared to previous surrogate model approaches.
- Abstract(参考訳): ニューロンは神経突起ネットワーク内で複雑なジオメトリーを示し、シグナル伝達や栄養輸送などのプロセスにおいて重要な役割を果たす。
ネットワーク内の物質輸送の正確なシミュレーションは、これらの生物学的現象を理解するのに不可欠であるが、複雑な木のような構造を持つため、重要な計算上の課題を生じさせる。
伝統的なアプローチは時間集約的でリソースの要求であるが、主に定常な放物速度プロファイルと分岐を持つパイプからなるニューロンツリーの固有の性質は、計算最適化の機会を与える。
これらの課題に対処するため,我々は,ニューラルツリー内の物質輸送シミュレーションの合理化を目的としたグラフオートコーダを用いた遅延ダイナミクスサーロゲート(GALDS)モデルを提案する。
GALDSはグラフオートエンコーダを使用して、ネットワークの幾何学、速度場、濃度プロファイルの潜在表現を符号化する。
これらの潜在空間表現はグローバルグラフに組み立てられ、その後、ニューラル正規微分方程式(Neural Ordinary Differential Equations (Neural ODEs))の概念にインスパイアされた訓練されたグラフ潜在空間系力学モデルを介して潜在空間の系力学を予測するために使用される。
オートエンコーダの統合により、トレーニングデータ要求を低減したより小さなグラフニューラルネットワークモデルの使用が可能になる。
さらに、Neural ODEコンポーネントは、リカレントニューラルネットワークでよく発生するエラー蓄積の問題を効果的に緩和する。
GALDSモデルの有効性は、8つの未確認測地と4つの異常輸送例で示され、提案手法は最大相対誤差で3%の平均相対誤差を達成し、従来のサロゲートモデルと比較して10倍の速度向上を示す。
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
本稿では,ハイブリッド量子古典系の非線形非断熱力学をモデル化するための畳み込みニューラルネットワークに基づくRNNモデルを提案する。
検証研究により、訓練されたPARCモデルは、一次元半古典的なホルシュタインモデルの時空進化を再現できることが示されている。
論文 参考訳(メタデータ) (2024-12-09T16:23:25Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。