Learning from Imperfect Data: Robust Inference of Dynamic Systems using Simulation-based Generative Model
- URL: http://arxiv.org/abs/2507.10884v1
- Date: Tue, 15 Jul 2025 00:56:21 GMT
- Title: Learning from Imperfect Data: Robust Inference of Dynamic Systems using Simulation-based Generative Model
- Authors: Hyunwoo Cho, Hyeontae Jo, Hyung Ju Hwang,
- Abstract summary: We propose a Simulation-based Generative Model for Imperfect Data (SiGMoID) that enables precise and robust inference for dynamic systems.<n>We demonstrate that SiGMoID quantifies data noise, estimates system parameters, and infers unobserved system components.
- Score: 4.430997638097218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: System inference for nonlinear dynamic models, represented by ordinary differential equations (ODEs), remains a significant challenge in many fields, particularly when the data are noisy, sparse, or partially observable. In this paper, we propose a Simulation-based Generative Model for Imperfect Data (SiGMoID) that enables precise and robust inference for dynamic systems. The proposed approach integrates two key methods: (1) physics-informed neural networks with hyper-networks that constructs an ODE solver, and (2) Wasserstein generative adversarial networks that estimates ODE parameters by effectively capturing noisy data distributions. We demonstrate that SiGMoID quantifies data noise, estimates system parameters, and infers unobserved system components. Its effectiveness is validated validated through realistic experimental examples, showcasing its broad applicability in various domains, from scientific research to engineered systems, and enabling the discovery of full system dynamics.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Learning Stochastic Dynamical Systems with Structured Noise [12.056775765064266]
Due to the availability of large-scale data sets, there is growing interest in learning models from observations with noise.<n>We present a nonparametric framework to learn both the drift and diffusion terms in systems of SDEs where the noise is singular.<n>We provide an algorithm for constructing estimators given trajectory data and demonstrate the effectiveness of our methods.
arXiv Detail & Related papers (2025-03-03T00:40:53Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.