KptLLM++: Towards Generic Keypoint Comprehension with Large Language Model
- URL: http://arxiv.org/abs/2507.11102v1
- Date: Tue, 15 Jul 2025 08:52:28 GMT
- Title: KptLLM++: Towards Generic Keypoint Comprehension with Large Language Model
- Authors: Jie Yang, Wang Zeng, Sheng Jin, Lumin Xu, Wentao Liu, Chen Qian, Zhen Li, Ruimao Zhang,
- Abstract summary: Keypoints, as structure-aware, pixel-level, and compact representations of objects, play a crucial role in applications such as fine-grained image analysis, object retrieval, and behavior recognition.<n>In this paper, we propose KptLLM++, a novel multimodal large language model that specifically designed for generic keypoint comprehension.<n>By unifying keypoint detection across varied contexts, KptLLM++ establishes itself as an advanced interface, fostering more effective human-AI collaboration.
- Score: 31.59640895434506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Multimodal Large Language Models (MLLMs) has revolutionized image understanding by bridging textual and visual modalities. However, these models often struggle with capturing fine-grained semantic information, such as the precise identification and analysis of object keypoints. Keypoints, as structure-aware, pixel-level, and compact representations of objects, particularly articulated ones, play a crucial role in applications such as fine-grained image analysis, object retrieval, and behavior recognition. In this paper, we propose KptLLM++, a novel multimodal large language model that specifically designed for generic keypoint comprehension through the integration of diverse input modalities guided by user-defined instructions. By unifying keypoint detection across varied contexts, KptLLM++ establishes itself as an advanced interface, fostering more effective human-AI collaboration. The model is built upon a novel identify-then-detect paradigm, which first interprets keypoint semantics and subsequently localizes their precise positions through a structured chain-of-thought reasoning mechanism. To push the boundaries of performance, we have scaled up the training dataset to over 500K samples, encompassing diverse objects, keypoint categories, image styles, and scenarios with complex occlusions. This extensive scaling enables KptLLM++ to unlock its potential, achieving remarkable accuracy and generalization. Comprehensive experiments on multiple keypoint detection benchmarks demonstrate its state-of-the-art performance, underscoring its potential as a unified solution for fine-grained image understanding and its transformative implications for human-AI interaction.
Related papers
- OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding.<n>Existing solutions often rely on task-specific architectures and objectives for individual tasks.<n>In this paper, we introduce Omni V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis.
arXiv Detail & Related papers (2025-02-22T09:32:01Z) - Multi-Faceted Multimodal Monosemanticity [42.64636740703632]
We take a data-driven approach to analyze interpretable, monosemantic features extracted from deep multimodal models.<n>Specifically, we investigate CLIP, a prominent visual-language representation model trained on massive image-text pairs.<n>We develop a set of multi-modal interpretability tools and measures designed to disentangle and analyze features learned from CLIP.
arXiv Detail & Related papers (2025-02-16T14:51:07Z) - KptLLM: Unveiling the Power of Large Language Model for Keypoint Comprehension [31.283133365170052]
We introduce Semantic Keypoint, which aims to comprehend keypoints across different task scenarios.
We also introduce KptLLM, a unified multimodal model that utilizes an identify-then-detect strategy.
KptLLM adeptly handles various modality inputs, facilitating the interpretation of both semantic contents and keypoint locations.
arXiv Detail & Related papers (2024-11-04T06:42:24Z) - Keypoint Abstraction using Large Models for Object-Relative Imitation Learning [78.92043196054071]
Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics.
Keypoint-based representations have been proven effective as a succinct representation for essential object capturing features.
We propose KALM, a framework that leverages large pre-trained vision-language models to automatically generate task-relevant and cross-instance consistent keypoints.
arXiv Detail & Related papers (2024-10-30T17:37:31Z) - ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization [49.12958154544838]
ForgeryGPT is a novel framework that advances the Image Forgery Detection and localization task.<n>It captures high-order correlations of forged images from diverse linguistic feature spaces.<n>It enables explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture.
arXiv Detail & Related papers (2024-10-14T07:56:51Z) - Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection [37.57355457749918]
We introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP.
Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction.
Experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings.
arXiv Detail & Related papers (2024-08-05T14:05:25Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD) task is innovatively designed to use text prompts for identifying arbitrary keypoints across any species.
We have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM)
This framework combines vision and language models, creating an interplay between language features and local keypoint visual features.
arXiv Detail & Related papers (2023-10-08T07:42:41Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - Beyond Bounding Box: Multimodal Knowledge Learning for Object Detection [3.785123406103386]
We take advantage of language prompt to introduce effective and unbiased linguistic supervision into object detection.
We propose a new mechanism called multimodal knowledge learning (textbfMKL), which is required to learn knowledge from language supervision.
arXiv Detail & Related papers (2022-05-09T07:03:30Z) - MOPT: Multi-Object Panoptic Tracking [33.77171216778909]
We introduce a novel perception task denoted as multi-object panoptic tracking (MOPT)
MOPT allows for exploiting pixel-level semantic information of 'thing' and'stuff' classes, temporal coherence, and pixel-level associations over time.
We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.
arXiv Detail & Related papers (2020-04-17T11:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.