Quantum Adaptive Excitation Network with Variational Quantum Circuits for Channel Attention
- URL: http://arxiv.org/abs/2507.11217v1
- Date: Tue, 15 Jul 2025 11:40:37 GMT
- Title: Quantum Adaptive Excitation Network with Variational Quantum Circuits for Channel Attention
- Authors: Yu-Chao Hsu, Kuan-Cheng Chen, Tai-Yue Li, Nan-Yow Chen,
- Abstract summary: We introduce the Quantum Adaptive Excitation Network (QAE-Net)<n>QAE-Net is a hybrid quantum-classical framework designed to enhance channel attention mechanisms in Convolutional Neural Networks (CNNs)
- Score: 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce the Quantum Adaptive Excitation Network (QAE-Net), a hybrid quantum-classical framework designed to enhance channel attention mechanisms in Convolutional Neural Networks (CNNs). QAE-Net replaces the classical excitation block of Squeeze-and-Excitation modules with a shallow Variational Quantum Circuit (VQC), leveraging quantum superposition and entanglement to capture higher-order inter-channel dependencies that are challenging to model with purely classical approaches. We evaluate QAE-Net on benchmark image classification tasks, including MNIST, FashionMNIST, and CIFAR-10, and observe consistent performance improvements across all datasets, with particularly notable gains on tasks involving three-channel inputs. Furthermore, experimental results demonstrate that increasing the number of variational layers in the quantum circuit leads to progressively higher classification accuracy, underscoring the expressivity benefits of deeper quantum models. These findings highlight the potential of integrating VQCs into CNN architectures to improve representational capacity while maintaining compatibility with near-term quantum devices. The proposed approach is tailored for the Noisy Intermediate-Scale Quantum (NISQ) era, offering a scalable and feasible pathway for deploying quantum-enhanced attention mechanisms in practical deep learning workflows.
Related papers
- Iterative Quantum Feature Maps [0.0]
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks.<n> deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints.<n>We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights.
arXiv Detail & Related papers (2025-06-24T09:40:10Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
We propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism.<n>QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space.<n> Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants.
arXiv Detail & Related papers (2025-04-05T02:52:37Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.<n>By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.<n>In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Channel Attention for Quantum Convolutional Neural Networks [0.0]
Quantum convolutional neural networks (QCNNs) have gathered attention as one of the most promising algorithms for quantum machine learning.
We propose a channel attention mechanism for QCNNs and show the effectiveness of this approach for quantum phase classification problems.
arXiv Detail & Related papers (2023-11-06T04:54:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.