論文の概要: Fairness-Aware Grouping for Continuous Sensitive Variables: Application for Debiasing Face Analysis with respect to Skin Tone
- arxiv url: http://arxiv.org/abs/2507.11247v1
- Date: Tue, 15 Jul 2025 12:21:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.104183
- Title: Fairness-Aware Grouping for Continuous Sensitive Variables: Application for Debiasing Face Analysis with respect to Skin Tone
- Title(参考訳): 連続感性変数に対するフェアネスアウェア・グループ化:皮膚音に対する顔分析の偏見化への応用
- Authors: Veronika Shilova, Emmanuel Malherbe, Giovanni Palma, Laurent Risser, Jean-Michel Loubes,
- Abstract要約: 連続的(多次元的)な属性に対する公平性に基づくグループ化手法を提案する。
識別レベルに応じてデータをグループ化することにより、新しい基準を最大化する分割を同定する。
提案手法を複数の合成データセットを用いて検証し,人口分布の変化によるロバスト性を示す。
- 参考スコア(独自算出の注目度): 3.3298048942057523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within a legal framework, fairness in datasets and models is typically assessed by dividing observations into predefined groups and then computing fairness measures (e.g., Disparate Impact or Equality of Odds with respect to gender). However, when sensitive attributes such as skin color are continuous, dividing into default groups may overlook or obscure the discrimination experienced by certain minority subpopulations. To address this limitation, we propose a fairness-based grouping approach for continuous (possibly multidimensional) sensitive attributes. By grouping data according to observed levels of discrimination, our method identifies the partition that maximizes a novel criterion based on inter-group variance in discrimination, thereby isolating the most critical subgroups. We validate the proposed approach using multiple synthetic datasets and demonstrate its robustness under changing population distributions - revealing how discrimination is manifested within the space of sensitive attributes. Furthermore, we examine a specialized setting of monotonic fairness for the case of skin color. Our empirical results on both CelebA and FFHQ, leveraging the skin tone as predicted by an industrial proprietary algorithm, show that the proposed segmentation uncovers more nuanced patterns of discrimination than previously reported, and that these findings remain stable across datasets for a given model. Finally, we leverage our grouping model for debiasing purpose, aiming at predicting fair scores with group-by-group post-processing. The results demonstrate that our approach improves fairness while having minimal impact on accuracy, thus confirming our partition method and opening the door for industrial deployment.
- Abstract(参考訳): 法的枠組みの中では、データセットとモデルの公正性は、一般的に、事前に定義されたグループに観察を分割し、それから公正度(例えば、性別に関するオッドの異なる影響または平等)を計算することで評価される。
しかしながら、肌の色などの敏感な属性が連続している場合、デフォルトのグループに分けることは、一部の少数民族が経験する差別を見逃したり、曖昧にすることができる。
この制限に対処するために、連続(多次元かもしれない)感度属性に対する公平性に基づくグループ化手法を提案する。
識別のレベルに応じてデータをグループ化することにより、識別におけるグループ間分散に基づく新しい基準を最大化する分割を同定し、最も重要なサブグループを分離する。
提案手法を複数の合成データセットを用いて検証し,人口分布の変化によるロバスト性を示す。
さらに,皮膚色に対するモノトニックフェアネスの設定について検討した。
CelebA と FFHQ の両者における実証的な結果から,提案したセグメンテーションにより,これまで報告されたよりもニュアンスな識別パターンが明らかになり,与えられたモデルに対するデータセット間で安定な結果が得られた。
最後に、グループごとのポストプロセッシングによる公正スコアの予測を目的として、グループ化モデルをデバイアス化の目的に活用する。
その結果,本手法は精度への影響を最小限に抑えながら公平性を向上し,分割手法の確認と産業展開の扉を開くことができることがわかった。
関連論文リスト
- Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation [17.495053606192375]
機械学習を用いて意思決定を行う場合、アルゴリズム上の決定が公平であり、特定の個人やグループに対して差別的でないことを保証することが重要である。
既存のグループフェアネス手法は、人種や性別などの保護された変数によって規定されたグループ間で平等な結果を保証することを目的としている。
グループ間の系統的な差異が結果に重要な役割を果たす場合、これらの手法は非保護変数の影響を見逃す可能性がある。
論文 参考訳(メタデータ) (2023-05-29T15:41:12Z) - Fair Without Leveling Down: A New Intersectional Fairness Definition [1.0958014189747356]
本稿では,感性グループ間での絶対値と相対値のパフォーマンスを組み合わせた$alpha$-Intersectional Fairnessという新たな定義を提案する。
我々は、新しいフェアネス定義を用いて、複数の一般的なプロセス内機械学習アプローチをベンチマークし、単純なベースラインよりも改善が得られないことを示します。
論文 参考訳(メタデータ) (2023-05-21T16:15:12Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - The Unbearable Weight of Massive Privilege: Revisiting Bias-Variance
Trade-Offs in the Context of Fair Prediction [7.975779552420981]
単一モデルによるトレードオフを改善することを目的とした条件付きid(ciid)モデルを提案する。
我々は、CompASおよびフォークテーブルデータセット上で、我々の設定を実証的にテストする。
分析の結果,条件付きモデルが好まれる原則的手順や具体的な実世界のユースケースが存在する可能性が示唆された。
論文 参考訳(メタデータ) (2023-02-17T05:34:35Z) - Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness Interventions [13.279926364884512]
機械学習モデルは、モデル開発時の選択とデータ固有のバイアスにより、特定の人口群で過小評価される可能性がある。
フェアネス制約下でのモデルの性能限界を決定することにより,アレータリック判別の定量化を行う。
本研究では, 公平性制約を適用した際のモデルの精度と, アレタリック判別による限界とのギャップとして, てんかんの判別を定量化する。
論文 参考訳(メタデータ) (2023-01-27T15:38:20Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。