Quantized decay charges in non-Hermitian networks characterized by directed graphs
- URL: http://arxiv.org/abs/2507.11322v1
- Date: Tue, 15 Jul 2025 13:54:03 GMT
- Title: Quantized decay charges in non-Hermitian networks characterized by directed graphs
- Authors: Wenwen Liu, Junyao Wu, Li Zhang, Oubo You, Ye Tian, Wenan Zang, Hongsheng Chen, Bumki Min, Yihao Yang, Shuang Zhang,
- Abstract summary: We introduce a new class of non-Hermitian systems exhibiting pure decay modes.<n>We derive universal conditions for these modes, enabling versatile configurations.<n>This discovery paves the way for potential applications in photonics, signal processing, and beyond.
- Score: 5.371865475209974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian physics has unveiled a realm of exotic phenomena absent in Hermitian systems, with the non-Hermitian skin effect (NHSE) showcasing boundary-localized eigenstates driven by non-reciprocal interactions. Here, we introduce a new class of non-Hermitian systems exhibiting pure decay modes: eigenstates with pure, smooth exponential decay, devoid of the oscillatory wave patterns typical of traditional NHSE. Modeled as directed graphs with non-reciprocal hopping, these systems reveal quantized decay charges, defined as the sum of decay constants along edges at each node, offering a novel topological invariant. We derive universal conditions for these modes, enabling versatile configurations from one-dimensional rings, directed graphs with complicated connectivity, to higher-dimensional lattices. Experimental validation using microwave resonant circuits confirms the predicted pure decay profiles. This discovery paves the way for potential applications in photonics, signal processing, and beyond, harnessing the unique topological properties of non-Hermitian networks.
Related papers
- NonHermitian Topological Phases in a Hermitian Modified Bosonic Kitaev Chain [0.0]
modification to bosonic Kitaev chain supports nonHermitian skin effect and nontrivial topological edge modes.<n>We establish an exact mapping between the excitation Hamiltonian of our system and a nonHermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-05-21T18:01:08Z) - Non-Hermitian topology and skin modes in the continuum via parametric processes [44.99833362998488]
We show that Hermitian, nonlocal parametric pairing processes can induce non-Hermitian topology and skin modes.<n>Our model, stabilized by local dissipation, reveals exceptional points that spawn a tilted diabolical line in the dispersion.
arXiv Detail & Related papers (2025-05-05T16:38:20Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.<n>These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.<n>We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Kinked linear response from non-Hermitian cold-atom pumping [3.5932002706017556]
We find that non-Hermiticity gives rise to abrupt and prominent kinks in the semi-classical wave packet trajectories of quantum gases.
This physically stems from a hitherto underappreciated intrinsic non-locality from non-Hermitian pumping.
Our results showcase unique non-monotonic behavior from non-Hermitian pumping beyond the non-Hermitian skin effect.
arXiv Detail & Related papers (2023-06-22T18:00:13Z) - Restoration of the non-Hermitian bulk-boundary correspondence via
topological amplification [0.0]
Non-Hermitian (NH) lattice Hamiltonians display a unique kind of energy gap and extreme sensitivity to boundary conditions.
Due to the NH skin effect, the separation between edge and bulk states is blurred.
We restore the bulk-boundary correspondence for the most paradigmatic class of NH Hamiltonians.
arXiv Detail & Related papers (2022-07-25T18:00:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Chiral metals and entrapped insulators in a one-dimensional topological
non-Hermitian system [4.3012765978447565]
We study many-body'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions.
arXiv Detail & Related papers (2021-11-03T13:42:18Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Hermitian zero modes protected by nonnormality: Application of
pseudospectra [0.0]
We develop a theory of zero modes with quantum anomaly for general Hermitian lattice systems.
We relate exact zero modes and quasi-zero modes of a Hermitian system to spectra and pseudospectra of a non-Hermitian system.
Our theory reveals the presence of nonnormality-protected zero modes, as well as the usefulness of the nonnormality and pseudospectra as tools for topological and/or non-Hermitian physics.
arXiv Detail & Related papers (2020-05-04T17:58:52Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.