Toward Improving fNIRS Classification: A Study on Activation Functions in Deep Neural Architectures
- URL: http://arxiv.org/abs/2507.11436v1
- Date: Tue, 15 Jul 2025 15:58:36 GMT
- Title: Toward Improving fNIRS Classification: A Study on Activation Functions in Deep Neural Architectures
- Authors: Behtom Adeli, John McLinden, Pankaj Pandey, Ming Shao, Yalda Shahriari,
- Abstract summary: Activation functions are critical to the performance of deep neural networks in domains such as functional near-infrared spectroscopy (fNIRS)<n>This study evaluates a range of conventional and field-specific activation functions for fNIRS classification tasks using multiple deep learning architectures.
- Score: 7.243563999211656
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Activation functions are critical to the performance of deep neural networks, particularly in domains such as functional near-infrared spectroscopy (fNIRS), where nonlinearity, low signal-to-noise ratio (SNR), and signal variability poses significant challenges to model accuracy. However, the impact of activation functions on deep learning (DL) performance in the fNIRS domain remains underexplored and lacks systematic investigation in the current literature. This study evaluates a range of conventional and field-specific activation functions for fNIRS classification tasks using multiple deep learning architectures, including the domain-specific fNIRSNet, AbsoluteNet, MDNN, and shallowConvNet (as the baseline), all tested on a single dataset recorded during an auditory task. To ensure fair a comparison, all networks were trained and tested using standardized preprocessing and consistent training parameters. The results show that symmetrical activation functions such as Tanh and the Absolute value function Abs(x) can outperform commonly used functions like the Rectified Linear Unit (ReLU), depending on the architecture. Additionally, a focused analysis of the role of symmetry was conducted using a Modified Absolute Function (MAF), with results further supporting the effectiveness of symmetrical activation functions on performance gains. These findings underscore the importance of selecting proper activation functions that align with the signal characteristics of fNIRS data.
Related papers
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.<n>We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.<n>This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Fractional Concepts in Neural Networks: Enhancing Activation Functions [0.6445605125467574]
This study integrates fractional calculus into neural networks by introducing fractional order derivatives (FDO) as tunable parameters in activation functions.<n>We evaluate these fractional activation functions on various datasets and network architectures, comparing their performance with traditional and new activation functions.
arXiv Detail & Related papers (2023-10-18T10:49:29Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - GELU Activation Function in Deep Learning: A Comprehensive Mathematical
Analysis and Performance [2.458437232470188]
We investigate the differentiability, boundedness, stationarity, and smoothness properties of the GELU activation function.
Our results demonstrate the superior performance of GELU compared to other activation functions.
arXiv Detail & Related papers (2023-05-20T03:22:43Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
Convolutional Neural Networks (CNN) conduct image classification by activating dominant features that correlated with labels.
We introduce a simple training, Self-Challenging Representation (RSC), that significantly improves the generalization of CNN to the out-of-domain data.
RSC iteratively challenges the dominant features activated on the training data, and forces the network to activate remaining features that correlates with labels.
arXiv Detail & Related papers (2020-07-05T21:42:26Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z) - Discovering Parametric Activation Functions [17.369163074697475]
This paper proposes a technique for customizing activation functions automatically, resulting in reliable improvements in performance.
Experiments with four different neural network architectures on the CIFAR-10 and CIFAR-100 image classification datasets show that this approach is effective.
arXiv Detail & Related papers (2020-06-05T00:25:33Z) - Investigating the interaction between gradient-only line searches and
different activation functions [0.0]
Gradient-only line searches (GOLS) adaptively determine step sizes along search directions for discontinuous loss functions in neural network training.
We find that GOLS are robust for a range of activation functions, but sensitive to the Rectified Linear Unit (ReLU) activation function in standard feedforward architectures.
arXiv Detail & Related papers (2020-02-23T12:28:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.