論文の概要: Recursive Bound-Constrained AdaGrad with Applications to Multilevel and Domain Decomposition Minimization
- arxiv url: http://arxiv.org/abs/2507.11513v1
- Date: Tue, 15 Jul 2025 17:32:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.207782
- Title: Recursive Bound-Constrained AdaGrad with Applications to Multilevel and Domain Decomposition Minimization
- Title(参考訳): 再帰的境界制約AdaGradとマルチレベルおよびドメイン分割最小化への応用
- Authors: Serge Gratton, Alena Kopaničáková, Philippe Toint,
- Abstract要約: 2つのOFOノイズ耐性アルゴリズムが提示され、制約を扱い、不正確な勾配を扱い、二階情報を使用する。
数値実験は、PDEに基づく問題から深層ニューラルネットワークトレーニングに至るまでの応用について論じ、その卓越した計算効率を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Two OFFO (Objective-Function Free Optimization) noise tolerant algorithms are presented that handle bound constraints, inexact gradients and use second-order information when available.The first is a multi-level method exploiting a hierarchical description of the problem and the second is a domain-decomposition method covering the standard addditive Schwarz decompositions. Both are generalizations of the first-order AdaGrad algorithm for unconstrained optimization. Because these algorithms share a common theoretical framework, a single convergence/complexity theory is provided which covers them both. Its main result is that, with high probability, both methods need at most $O(\epsilon^{-2})$ iterations and noisy gradient evaluations to compute an $\epsilon$-approximate first-order critical point of the bound-constrained problem. Extensive numerical experiments are discussed on applications ranging from PDE-based problems to deep neural network training, illustrating their remarkable computational efficiency.
- Abstract(参考訳): 2つのOFF(Objective-Function Free Optimization)ノイズトレラントアルゴリズムは、制約を扱い、不正確な勾配を扱い、可能ならば2次情報を使用する。
どちらも制約なし最適化のための一階AdaGradアルゴリズムの一般化である。
これらのアルゴリズムは共通の理論的枠組みを共有するため、それらの両方をカバーする単一の収束/複雑性理論が提供される。
その主な結果は、高い確率で、どちらの手法も少なくとも$O(\epsilon^{-2})$反復とノイズ勾配の評価を必要とし、有界制約問題において$\epsilon$-approximate 1次臨界点を計算することである。
PDEに基づく問題から深層ニューラルネットワークトレーニングまで、広範囲にわたる数値実験を行い、その卓越した計算効率を実証した。
関連論文リスト
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
一般ベイズ因子モデルにおける最大a-ポストペリオーリ推定法を提案する。
ベイジアン・ガウス混合モデルと潜在ディリクレ割り当てに対するMAP推定アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-10-24T19:57:56Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
2組の制約を持つ凸最適化の問題は、半定値プログラミングの文脈で頻繁に発生する。
最初の制約セットへのプロジェクションは困難であるため、プロジェクションフリーなアルゴリズムを探索する必要がある。
提案アルゴリズムの有効性は, スパース行列推定, 半定緩和によるクラスタリング, および一様スペースカット問題の適用性について検証した。
論文 参考訳(メタデータ) (2021-07-14T08:01:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - On the Convergence of Overlapping Schwarz Decomposition for Nonlinear
Optimal Control [7.856998585396421]
非線形シュワルツ問題を解くために重なり合う分解アルゴリズムの収束特性について検討する。
アルゴリズムは局所的な線形収束を示し、収束速度は重なり合うサイズで指数関数的に向上することを示す。
論文 参考訳(メタデータ) (2020-05-14T00:19:28Z) - Inexact and Stochastic Generalized Conditional Gradient with Augmented
Lagrangian and Proximal Step [2.0196229393131726]
我々は著者の以前の論文で開発されたCGALPアルゴリズムの不正確さとバージョンを分析した。
これにより、いくつかの勾配、項、および/または線形最小化オラクルを不正確な方法で計算することができる。
ラグランジアンのアフィン制約の最適性と実現可能性への収束を示す。
論文 参考訳(メタデータ) (2020-05-11T14:52:16Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
ニューラルネットワーク検証の基本的なコンポーネントは、出力が取ることのできる値のバウンダリの計算である。
ラグランジアン分解に基づく新しい手法を提案する。
ランニングタイムのごく一部で、既成の解法に匹敵するバウンダリが得られることを示す。
論文 参考訳(メタデータ) (2020-02-24T17:55:10Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。