Canonical Bayesian Linear System Identification
- URL: http://arxiv.org/abs/2507.11535v1
- Date: Tue, 15 Jul 2025 17:58:55 GMT
- Title: Canonical Bayesian Linear System Identification
- Authors: Andrey Bryutkin, Matthew E. Levine, IƱigo Urteaga, Youssef Marzouk,
- Abstract summary: We introduce canonical forms of LTI systems within the Bayesian framework.<n>We rigorously establish that inference in these minimal parameterizations fully captures all invariant system dynamics.<n>This approach unlocks the use of meaningful structure-aware priors.
- Score: 2.60567273797562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard Bayesian approaches for linear time-invariant (LTI) system identification are hindered by parameter non-identifiability; the resulting complex, multi-modal posteriors make inference inefficient and impractical. We solve this problem by embedding canonical forms of LTI systems within the Bayesian framework. We rigorously establish that inference in these minimal parameterizations fully captures all invariant system dynamics (e.g., transfer functions, eigenvalues, predictive distributions of system outputs) while resolving identifiability. This approach unlocks the use of meaningful, structure-aware priors (e.g., enforcing stability via eigenvalues) and ensures conditions for a Bernstein--von Mises theorem -- a link between Bayesian and frequentist large-sample asymptotics that is broken in standard forms. Extensive simulations with modern MCMC methods highlight advantages over standard parameterizations: canonical forms achieve higher computational efficiency, generate interpretable and well-behaved posteriors, and provide robust uncertainty estimates, particularly from limited data.
Related papers
- Invariant Measures for Data-Driven Dynamical System Identification: Analysis and Application [0.0]
We propose a novel approach for performing dynamical system identification, based upon the comparison of simulated and observed physical invariant measures.<n>We gain robustness against pervasive challenges in system identification including noise, chaos, and slow sampling.
arXiv Detail & Related papers (2025-01-31T23:27:33Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex.
The integration of continuous-time ordinary differential equations (ODEs) is crucial for aligning theoretical models with discretely sampled data.
This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems.
arXiv Detail & Related papers (2024-04-19T14:52:14Z) - Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
We develop scalable formal verification algorithms without shifting the problem to unrealistic assumptions.
In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates.
We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope.
arXiv Detail & Related papers (2024-03-15T17:32:02Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - The Variational Method of Moments [65.91730154730905]
conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables.
Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem.
We provide algorithms for valid statistical inference based on the same kind of variational reformulations.
arXiv Detail & Related papers (2020-12-17T07:21:06Z) - Variational Nonlinear System Identification [0.8793721044482611]
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem.
We employ a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation.
This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools.
arXiv Detail & Related papers (2020-12-08T05:43:50Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.