ClarifAI: Enhancing AI Interpretability and Transparency through Case-Based Reasoning and Ontology-Driven Approach for Improved Decision-Making
- URL: http://arxiv.org/abs/2507.11733v1
- Date: Tue, 15 Jul 2025 21:02:28 GMT
- Title: ClarifAI: Enhancing AI Interpretability and Transparency through Case-Based Reasoning and Ontology-Driven Approach for Improved Decision-Making
- Authors: Srikanth Vemula,
- Abstract summary: ClarifAI is a novel approach to augment the transparency and interpretability of artificial intelligence (AI)<n>The paper elaborates on ClarifAI's theoretical foundations, combining CBR and CBR to furnish exhaustive explanation.<n>It further elaborates on the design principles and architectural blueprint, highlighting ClarifAI's potential to enhance AI interpretability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This Study introduces Clarity and Reasoning Interface for Artificial Intelligence(ClarifAI), a novel approach designed to augment the transparency and interpretability of artificial intelligence (AI) in the realm of improved decision making. Leveraging the Case-Based Reasoning (CBR) methodology and integrating an ontology-driven approach, ClarifAI aims to meet the intricate explanatory demands of various stakeholders involved in AI-powered applications. The paper elaborates on ClarifAI's theoretical foundations, combining CBR and ontologies to furnish exhaustive explanation mechanisms. It further elaborates on the design principles and architectural blueprint, highlighting ClarifAI's potential to enhance AI interpretability across different sectors and its applicability in high-stake environments. This research delineates the significant role of ClariAI in advancing the interpretability of AI systems, paving the way for its deployment in critical decision-making processes.
Related papers
- Transparent AI: The Case for Interpretability and Explainability [0.1505692475853115]
We present key insights and lessons learned from practical interpretability applications across diverse domains.<n>This paper offers actionable strategies and implementation guidance tailored to organizations at varying stages of AI maturity.
arXiv Detail & Related papers (2025-07-31T13:22:14Z) - Explainability in Context: A Multilevel Framework Aligning AI Explanations with Stakeholder with LLMs [11.11196150521188]
This paper addresses how trust in AI is influenced by the design and delivery of explanations.<n>The framework consists of three layers: algorithmic and domain-based, human-centered, and social explainability.
arXiv Detail & Related papers (2025-06-06T08:54:41Z) - KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning [46.85451489222176]
KERAIA is a novel framework and software platform for symbolic knowledge engineering.<n>It addresses the persistent challenges of representing, reasoning with, and executing knowledge in dynamic, complex, and context-sensitive environments.
arXiv Detail & Related papers (2025-05-07T10:56:05Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
This study introduces a single evaluation framework for XAI.<n>It uses both numbers and user feedback to check if the explanations are correct, easy to understand, fair, complete, and reliable.<n>We show the value of this framework through case studies in healthcare, finance, farming, and self-driving systems.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - Explainability in AI Based Applications: A Framework for Comparing Different Techniques [2.5874041837241304]
In business applications, the challenge lies in selecting an appropriate explainability method that balances comprehensibility with accuracy.
This paper proposes a novel method for the assessment of the agreement of different explainability techniques.
By providing a practical framework for understanding the agreement of diverse explainability techniques, our research aims to facilitate the broader integration of interpretable AI systems in business applications.
arXiv Detail & Related papers (2024-10-28T09:45:34Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - Designing explainable artificial intelligence with active inference: A
framework for transparent introspection and decision-making [0.0]
We discuss how active inference can be leveraged to design explainable AI systems.
We propose an architecture for explainable AI systems using active inference.
arXiv Detail & Related papers (2023-06-06T21:38:09Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.