Resampling strategies for imbalanced regression: a survey and empirical analysis
- URL: http://arxiv.org/abs/2507.11902v1
- Date: Wed, 16 Jul 2025 04:34:42 GMT
- Title: Resampling strategies for imbalanced regression: a survey and empirical analysis
- Authors: Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz,
- Abstract summary: Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed.<n>This work presents an experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user.<n>It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics.
- Score: 5.863538874435322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model's learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression.
Related papers
- IM-Context: In-Context Learning for Imbalanced Regression Tasks [9.318067144029403]
This paper proposes a paradigm shift towards in-context learning as an effective alternative to conventional in-weight learning methods.
In-context learning refers to the ability of a model to condition itself, given a prompt sequence composed of in-context samples.
We study the impact of the prompt sequence on the model performance from both theoretical and empirical perspectives.
arXiv Detail & Related papers (2024-05-28T14:10:51Z) - Statistical Agnostic Regression: a machine learning method to validate regression models [0.0]
We introduce Statistical Agnostic Regression (SAR) for evaluating the statistical significance of machine learning (ML)-based linear regression models.
We define a threshold that ensures there is sufficient evidence, with a probability of at least $1-eta$, to conclude the existence of a linear relationship in the population between the explanatory (feature) and the response (label) variables.
arXiv Detail & Related papers (2024-02-23T09:19:26Z) - A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming [1.6874375111244329]
This paper considers a generalized linear regression model as a problem with chance constraints.
The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model.
arXiv Detail & Related papers (2024-01-16T16:45:51Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Streaming Active Learning for Regression Problems Using Regression via
Classification [12.572218568705376]
We propose to use the regression-via-classification framework for streaming active learning for regression.
Regression-via-classification transforms regression problems into classification problems so that streaming active learning methods can be applied directly to regression problems.
arXiv Detail & Related papers (2023-09-02T20:24:24Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - Contemporary Symbolic Regression Methods and their Relative Performance [5.285811942108162]
We assess 14 symbolic regression methods and 7 machine learning methods on a set of 252 diverse regression problems.
For the real-world datasets, we benchmark the ability of each method to learn models with low error and low complexity.
For the synthetic problems, we assess each method's ability to find exact solutions in the presence of varying levels of noise.
arXiv Detail & Related papers (2021-07-29T22:12:59Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.