論文の概要: Out-of-distribution data supervision towards biomedical semantic segmentation
- arxiv url: http://arxiv.org/abs/2507.12105v1
- Date: Wed, 16 Jul 2025 10:21:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.351376
- Title: Out-of-distribution data supervision towards biomedical semantic segmentation
- Title(参考訳): バイオメディカルセマンティックセグメンテーションに向けたアウト・オブ・ディストリビューションデータ管理
- Authors: Yiquan Gao, Duohui Xu,
- Abstract要約: この問題に対処するために,データ中心のフレームワークであるMed-OoDを提案する。
我々は,Med-OoDが画像上の画素ミス分類から,様々なセグメンテーションネットワークを防いでいることを明らかにした。
我々はまた、前景の分類ラベルを欠いたOoDデータを完全に活用して医療セグメントネットワークを訓練する新たな学習パラダイムも提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical segmentation networks easily suffer from the unexpected misclassification between foreground and background objects when learning on limited and imperfect medical datasets. Inspired by the strong power of Out-of-Distribution (OoD) data on other visual tasks, we propose a data-centric framework, Med-OoD to address this issue by introducing OoD data supervision into fully-supervised biomedical segmentation with none of the following needs: (i) external data sources, (ii) feature regularization objectives, (iii) additional annotations. Our method can be seamlessly integrated into segmentation networks without any modification on the architectures. Extensive experiments show that Med-OoD largely prevents various segmentation networks from the pixel misclassification on medical images and achieves considerable performance improvements on Lizard dataset. We also present an emerging learning paradigm of training a medical segmentation network completely using OoD data devoid of foreground class labels, surprisingly turning out 76.1% mIoU as test result. We hope this learning paradigm will attract people to rethink the roles of OoD data. Code is made available at https://github.com/StudioYG/Med-OoD.
- Abstract(参考訳): バイオメディカルセグメンテーションネットワークは、限定的で不完全な医療データセットを学習する際に、前景と背景オブジェクトの予期せぬ分類ミスに容易に悩まされる。
他の視覚的タスクにおけるOoD(Out-of-Distribution)データの強大な力に触発されて、OoDデータ監視を完全なバイオメディカルセグメンテーションに導入することにより、この問題に対処するデータ中心のフレームワークであるMed-OoDを提案する。
(i)外部データソース
(二)特色正規化目標
(三)追加注釈。
本手法はアーキテクチャの変更なしにセグメンテーションネットワークにシームレスに統合できる。
大規模な実験により、Med-OoDは様々なセグメンテーションネットワークが医療画像上のピクセルの誤分類を防ぎ、Lizardデータセットの性能改善を実現していることがわかった。
我々はまた、前景のクラスラベルを欠いたOoDデータを完全に活用して医療セグメンテーションネットワークを訓練する新たな学習パラダイムを提案し、76.1% mIoUをテスト結果として明らかにした。
この学習パラダイムが、OoDデータの役割を再考する人々を惹きつけることを期待しています。
コードはhttps://github.com/StudioYG/Med-OoD.comで公開されている。
関連論文リスト
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では、生成モデルを利用してトレーニングデータを合成し、未表現のモダリティに対するセグメンテーションモデルを訓練する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Cross-Domain Distribution Alignment for Segmentation of Private Unannotated 3D Medical Images [20.206972068340843]
本稿では、この問題を解決するために、新しいソースフリーなUnsupervised Domain Adaptation (UDA) 手法を提案する。
我々のアイデアは、ベースモデルにより、関連するソースドメインの内部的に学習された分布を推定することに基づいている。
我々は,実世界の3D医療データセット上でのSOTA性能を実証した。
論文 参考訳(メタデータ) (2024-10-11T19:28:10Z) - Unsupervised Domain Adaptation for Brain Vessel Segmentation through
Transwarp Contrastive Learning [46.248404274124546]
教師なし領域適応(Unsupervised domain adapt, UDA)は、ラベル付きソース分布とラベル付きターゲット分布との整合を目的とし、ドメイン不変な予測モデルを得る。
本稿では,ラベル付きソースと非ラベル付きターゲット分布の領域間ギャップを狭めるための,UDAのための簡易かつ強力なコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T10:01:22Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
我々は、教師なし脳画像合成におけるフェデレートドメイン翻訳のための新しいベンチマーク(FedMed-GAN)を提案する。
FedMed-GANは発電機の性能を犠牲にすることなくモード崩壊を緩和する。
FedMed-GANと他の集中型手法を比較するための総合的な評価を提供する。
論文 参考訳(メタデータ) (2022-01-22T02:50:29Z) - MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation [47.428577772279176]
本稿では,容量医学データに対するメタラーニングタスクを再定義する,勾配に基づくメタラーニングアルゴリズムであるMetaMedSegを提案する。
実験では, 異なる臓器のCTおよびMRIから2Dスライスを抽出し, 医療用デカトロンデータセットの評価を行った。
提案したボリュームタスク定義は,関連するベースラインと比較してIoUで最大30%改善した。
論文 参考訳(メタデータ) (2021-09-18T11:13:45Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。