論文の概要: Fast Variational Bayes for Large Spatial Data
- arxiv url: http://arxiv.org/abs/2507.12251v1
- Date: Wed, 16 Jul 2025 13:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.41767
- Title: Fast Variational Bayes for Large Spatial Data
- Title(参考訳): 大規模空間データのための高速変動ベイ
- Authors: Jiafang Song, Abhirup Datta,
- Abstract要約: 本稿では,NNGPを用いた大規模地理空間データ解析のための高速変分ベイズ手法であるspVarBayesを紹介する。
自動微分を変分計算、閉形式勾配更新、線形応答補正の組み合わせで置き換え、分散推定を改善した。
シミュレーション実験により,spNNGPに匹敵する精度が得られたが,計算コストの低減が図られ,精度と速度の両面で既存の変分推論手法よりもかなり優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent variational Bayes methods for geospatial regression, proposed as an alternative to computationally expensive Markov chain Monte Carlo (MCMC) sampling, have leveraged Nearest Neighbor Gaussian processes (NNGP) to achieve scalability. Yet, these variational methods remain inferior in accuracy and speed compared to spNNGP, the state-of-the-art MCMC-based software for NNGP. We introduce spVarBayes, a suite of fast variational Bayesian approaches for large-scale geospatial data analysis using NNGP. Our contributions are primarily computational. We replace auto-differentiation with a combination of calculus of variations, closed-form gradient updates, and linear response corrections for improved variance estimation. We also accommodate covariates (fixed effects) in the model and offer inference on the variance parameters. Simulation experiments demonstrate that we achieve comparable accuracy to spNNGP but with reduced computational costs, and considerably outperform existing variational inference methods in terms of both accuracy and speed. Analysis of a large forest canopy height dataset illustrates the practical implementation of proposed methods and shows that the inference results are consistent with those obtained from the MCMC approach. The proposed methods are implemented in publicly available Github R-package spVarBayes.
- Abstract(参考訳): 計算コストの高いマルコフ連鎖モンテカルロ (MCMC) サンプリングの代替として提案された地空間回帰のための最近の変分ベイズ法は、スケーラビリティを達成するためにNearest Neighbor Gaussian Process (NNGP) を活用している。
しかし、これらの変分法は、NNGPの最先端MCMCベースのソフトウェアであるspNNGPと比較して精度と速度が劣っている。
本稿では,NNGPを用いた大規模地理空間データ解析のための高速変分ベイズ手法であるspVarBayesを紹介する。
私たちの貢献は主に計算です。
自動微分を変分計算、閉形式勾配更新、線形応答補正の組み合わせで置き換え、分散推定を改善した。
また、モデル内の共変量(固定効果)を許容し、分散パラメータの推論を提供する。
シミュレーション実験により,spNNGPに匹敵する精度が得られたが,計算コストの低減が図られ,精度と速度の両面で既存の変分推論手法よりもかなり優れていた。
大規模林冠高データセットの解析は,提案手法の実践的実装を示し,MCMC手法による推定結果と一致していることを示す。
提案手法はGithub R-package spVarBayesで公開されている。
関連論文リスト
- Tighter sparse variational Gaussian processes [22.290236192353316]
Sparse variational Gaussian process (GP) 近似は、GPを大規模データセットにスケーリングするデファクトスタンダードとなっている。
本稿では、誘導点に与えられた条件的近似後続が前と一致しなければならないという標準仮定を緩和することにより、より厳密な変分近似を導入する。
論文 参考訳(メタデータ) (2025-02-07T08:33:28Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
本稿では,バックプロパゲーション,自動微分,GPU加速計算を活用するアモルティファイド変分推論手法を提案する。
本研究では, 後部近似の柔軟性を高めるために, フローの正規化がいかに有効かを示す。
論文 参考訳(メタデータ) (2020-04-11T15:30:47Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
変数の誘導に基づく変分推論手法はガウス過程(GP)モデルにおけるスケーラブルな推定のためのエレガントなフレームワークを提供する。
この研究において、変分フレームワークにおけるインプットの最大化は最適な性能をもたらすという共通の知恵に挑戦する。
論文 参考訳(メタデータ) (2020-03-06T08:53:18Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
サンプリング精度を向上させるための一様でないサブサンプリング手法を提案する。
EWSGは、一様勾配MCMC法がバッチ勾配MCMC法の統計的挙動を模倣するように設計されている。
EWSGの実践的な実装では、データインデックス上のMetropolis-Hastingsチェーンを介して、一様でないサブサンプリングを効率的に行う。
論文 参考訳(メタデータ) (2020-02-20T18:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。