Robust Causal Discovery in Real-World Time Series with Power-Laws
- URL: http://arxiv.org/abs/2507.12257v1
- Date: Wed, 16 Jul 2025 14:02:21 GMT
- Title: Robust Causal Discovery in Real-World Time Series with Power-Laws
- Authors: Matteo Tusoni, Giuseppe Masi, Andrea Coletta, Aldo Glielmo, Viviana Arrigoni, Novella Bartolini,
- Abstract summary: Causal Discovery (CD) has been proposed to explore causal relationships in time series.<n>CD algorithms often exhibit a high sensitivity to noise, resulting in misleading causal inferences when applied to real data.<n>We build a robust CD method based on the extraction of power -law spectral features that amplify genuine causal signals.
- Score: 4.070469857434042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring causal relationships in stochastic time series is a challenging yet crucial task with a vast range of applications, including finance, economics, neuroscience, and climate science. Many algorithms for Causal Discovery (CD) have been proposed, but they often exhibit a high sensitivity to noise, resulting in misleading causal inferences when applied to real data. In this paper, we observe that the frequency spectra of typical real-world time series follow a power-law distribution, notably due to an inherent self-organizing behavior. Leveraging this insight, we build a robust CD method based on the extraction of power -law spectral features that amplify genuine causal signals. Our method consistently outperforms state-of-the-art alternatives on both synthetic benchmarks and real-world datasets with known causal structures, demonstrating its robustness and practical relevance.
Related papers
- Causal Discovery in Multivariate Time Series through Mutual Information Featurization [0.1657441317977376]
Temporal Dependency to Causality (TD2C) learns to recognize complex causal signatures from a rich set of information-theoretic and statistical descriptors.<n>Our results show that TD2C achieves state-of-the-art performance, consistently outperforming established methods.
arXiv Detail & Related papers (2025-08-03T17:03:13Z) - ReTimeCausal: EM-Augmented Additive Noise Models for Interpretable Causal Discovery in Irregular Time Series [32.21736212737614]
This paper studies causal discovery in irregularly sampled time series in high-stakes domains like finance, healthcare, and climate science.<n>We propose ReTimeCausal, a novel integration of Additive Noise Models (ANM) and Expectation-Maximization (EM) that unifies physics-guided data imputation with sparse causal inference.
arXiv Detail & Related papers (2025-07-04T05:39:50Z) - Flow-Based Non-stationary Temporal Regime Causal Structure Learning [49.77103348208835]
We introduce FANTOM, a unified framework for causal discovery.<n>It handles non stationary processes along with non Gaussian and heteroscedastic noises.<n>It simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph.
arXiv Detail & Related papers (2025-06-20T15:12:43Z) - Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Identifying Nonstationary Causal Structures with High-Order Markov Switching Models [32.86541172199634]
Causal discovery in time series is a rapidly evolving field with a wide variety of applications in other areas such as climate science and neuroscience.
In this work we address nonstationarity via regime-dependent causal structures.
arXiv Detail & Related papers (2024-06-25T16:38:27Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
We propose a Time-Series Causal Neural Network (TS-CausalNN) to discover contemporaneous and lagged causal relations simultaneously.
In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data.
arXiv Detail & Related papers (2024-04-01T20:33:29Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.<n>We establish the identifiability of the regimes and DAGs within our framework.<n>Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - Causal Discovery from Conditionally Stationary Time Series [14.297325665581353]
We develop a causal discovery approach to handle a wide class of nonstationary time series.<n>Named State-Dependent Causal Inference (SDCI), our approach is able to recover the underlying causal dependencies.<n> Empirical experiments on nonlinear particle interaction data and gene regulatory networks demonstrate SDCI's superior performance.
arXiv Detail & Related papers (2021-10-12T18:12:57Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.