Modulator-free, self-testing quantum random number generator
- URL: http://arxiv.org/abs/2507.12346v1
- Date: Wed, 16 Jul 2025 15:39:29 GMT
- Title: Modulator-free, self-testing quantum random number generator
- Authors: Ana Blázquez-Coído, Fadri Grünenfelder, Anthony Martin, Raphael Houlmann, Hugo Zbinden, Davide Rusca,
- Abstract summary: Quantum random number generators (QRNGs) use the inherent unpredictability of quantum mechanics to generate true randomness.<n>We present a practical, self-testing QRNG designed to operate with an untrusted measurement device and a partially characterized source.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum random number generators (QRNGs) use the inherent unpredictability of quantum mechanics to generate true randomness, as opposed to classical random number generators. However, ensuring the authenticity of this randomness still requires robust verification. Self-testing QRNGs address this need by enabling the validation of the randomness produced based on the observed data from the experiment while requiring few assumptions. In this work, we present a practical, self-testing QRNG designed to operate with an untrusted measurement device and a partially characterized source, allowing the user to check the adequate functioning of the setup in real time. Our experiment yields a rate of certified random bits of 450kbps
Related papers
- Quantum Random Number Generator (QRNG): Theoretical and Experimental Investigations [2.2202064228378084]
Quantum Random Number Generators (QRNGs) emerged as a promising solution for generating truly random numbers.<n>In the present article, we give an overview of QRNGs highlighting the merits and demerits of various strategies.<n>We present the in-depth experimental explorations for building and characterizing QRNG using the homodyne detection technique.
arXiv Detail & Related papers (2025-06-03T04:55:37Z) - Quantum Random Number Generation with Partial Source Assumptions [26.983886835892363]
Quantum random number generator harnesses the power of quantum mechanics to generate true random numbers.
However, real-world devices often suffer from imperfections that can undermine the integrity and privacy of generated randomness.
We present a novel quantum random number generator and experimentally demonstrate it.
arXiv Detail & Related papers (2023-12-06T08:08:11Z) - Partial Loopholes Free Device Independent Quantum Random Number
Generator Using IBM's Quantum Computers [0.24578723416255752]
In this work, the violation of CHSH inequality has been used to propose a scheme by which one can generate device independent quantum random numbers.
The performance of each quantum computer against the CHSH test has been plotted and characterized.
This study will provide new directions for the development of self-testing and semi-self-testing random number generators using quantum computers.
arXiv Detail & Related papers (2023-09-11T08:34:45Z) - Quantum Random Number Generator Based on LED [0.0]
Quantum random number generators (QRNGs) produce random numbers based on the intrinsic probabilistic nature of quantum mechanics.
In this paper, we design and fabricate an embedded QRNG that produces random numbers based on fluctuations of spontaneous emission and absorption in a LED.
This device could pass NIST tests, the generation rate is 1 Mbit/s and the randomness of the output data is invariant in time.
arXiv Detail & Related papers (2023-05-25T14:31:32Z) - A privacy-preserving publicly verifiable quantum random number generator [48.7576911714538]
We report the implementation of an entanglement-based protocol that allows a third party to publicly perform statistical tests without compromising the privacy of the random bits.
limitations on computing power can restrict an end-user's ability to perform such verification.
arXiv Detail & Related papers (2023-05-18T12:13:48Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Self-testing randomness from a nuclear spin system [0.9774183498779745]
We present a proof-of-concept random number generator based on a nuclear spin system for the first time.
The entropy of randomness in the experimental data is quantified by two dimension witness certification protocols.
arXiv Detail & Related papers (2022-03-09T08:43:45Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z) - Using Randomness to decide among Locality, Realism and Ergodicity [91.3755431537592]
An experiment is proposed to find out, or at least to get an indication about, which one is false.
The results of such experiment would be important not only to the foundations of Quantum Mechanics.
arXiv Detail & Related papers (2020-01-06T19:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.