論文の概要: Surrogate modeling for uncertainty quantification in nonlinear dynamics
- arxiv url: http://arxiv.org/abs/2507.12358v1
- Date: Wed, 16 Jul 2025 15:57:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.459552
- Title: Surrogate modeling for uncertainty quantification in nonlinear dynamics
- Title(参考訳): 非線形力学における不確実性定量化のための代理モデリング
- Authors: S. Marelli, S. Schär, B. Sudret,
- Abstract要約: 工学における複雑なシステムの振る舞いを予測するには、しばしば運用条件に関する重大な不確実性を伴う。
不確実性定量化(UQ)は、モデリングベースのエンジニアリングにおいて重要なツールとなっている。
本章では,UQにおける代理モデリング手法のレビューを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the behavior of complex systems in engineering often involves significant uncertainty about operating conditions, such as external loads, environmental effects, and manufacturing variability. As a result, uncertainty quantification (UQ) has become a critical tool in modeling-based engineering, providing methods to identify, characterize, and propagate uncertainty through computational models. However, the stochastic nature of UQ typically requires numerous evaluations of these models, which can be computationally expensive and limit the scope of feasible analyses. To address this, surrogate models, i.e., efficient functional approximations trained on a limited set of simulations, have become central in modern UQ practice. This book chapter presents a concise review of surrogate modeling techniques for UQ, with a focus on the particularly challenging task of capturing the full time-dependent response of dynamical systems. It introduces a classification of time-dependent problems based on the complexity of input excitation and discusses corresponding surrogate approaches, including combinations of principal component analysis with polynomial chaos expansions, time warping techniques, and nonlinear autoregressive models with exogenous inputs (NARX models). Each method is illustrated with simple application examples to clarify the underlying ideas and practical use.
- Abstract(参考訳): 工学における複雑なシステムの挙動を予測するには、外部負荷、環境影響、製造の多様性など、運用条件に関する重大な不確実性が伴うことが多い。
その結果、不確実性定量化(UQ)はモデリングベースのエンジニアリングにおいて重要なツールとなり、計算モデルを通じて不確実性を特定し、特徴付けし、伝播する手段を提供している。
しかし、UQの確率的性質は一般にこれらのモデルの多くの評価を必要とするため、計算コストがかかり、実現可能な分析の範囲が制限される。
これを解決するために、シミュレーションの限られたセットで訓練された効率的な関数近似であるシュロゲートモデルが、現代のUQの実践の中心となっている。
本章では、動的システムの完全な時間依存応答を捉えるという特に困難な課題に焦点を当て、UQの代理モデリング手法の簡潔なレビューを紹介する。
入力励起の複雑さに基づく時間依存問題の分類を導入し、主成分分析と多項式カオス展開、時間ワープ手法、非線形自己回帰モデルと外因性入力(NARXモデル)の組み合わせを含む、対応する代理的アプローチについて議論する。
それぞれのメソッドは、基礎となるアイデアと実践的使用を明確にするために、単純なアプリケーション例で説明されます。
関連論文リスト
- Modèles de Substitution pour les Modèles à base d'Agents : Enjeux, Méthodes et Applications [0.0]
エージェントベースモデル(ABM)は、局所的な相互作用から生じる創発的な現象を研究するために広く用いられている。
ABMの複雑さは、リアルタイム意思決定と大規模シナリオ分析の可能性を制限する。
これらの制限に対処するため、サロゲートモデルはスパースシミュレーションデータから近似を学習することで効率的な代替手段を提供する。
論文 参考訳(メタデータ) (2025-05-17T08:55:33Z) - Q-function Decomposition with Intervention Semantics with Factored Action Spaces [51.01244229483353]
元の作用空間の低次元射影部分空間上で定義されるQ-函数を考察し、分解されたQ-函数の不偏性について考察する。
これにより、標準モデルフリー強化学習アルゴリズムにおいて、予測Q関数を用いてQ関数を近似する動作分解強化学習と呼ばれる一般的なスキームが導かれる。
論文 参考訳(メタデータ) (2025-04-30T05:26:51Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification [6.739642016124097]
本稿では,SciML(SciML)と不確実性定量化(UQ)の両タスクの実行が可能な代理モデリング手法として,物理制約付きカオス展開を提案する。
提案手法は,SciMLをUQにシームレスに統合し,その逆で,SciMLタスクの不確かさを効果的に定量化し,SciMLを利用してUQ関連タスクにおける不確実性評価を改善する。
論文 参考訳(メタデータ) (2024-02-23T06:04:15Z) - Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty [0.0]
サロゲートモデルは、複雑なモデルの高い計算コストを回避する手段を提供する。
我々は,ロゼンブラットによって実現された本質的およびパラメトリック不確実性の結合空間上でPCEサロゲートを開発する。
そこで我々は,PCE Sobol インデックスを計算するためのクローズドフォーム・ソリューションを利用して,モデル全体の感度解析を行う。
論文 参考訳(メタデータ) (2023-11-01T14:41:54Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning [1.2617078020344616]
負荷下での超弾性体の応答を予測できる高効率なディープラーニングサロゲートフレームワークを提案する。
このフレームワークは、特殊な畳み込みニューラルネットワークアーキテクチャ(いわゆるU-Net)の形式を採っている。
論文 参考訳(メタデータ) (2021-11-02T20:05:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。