A Survey of Reinforcement Learning for Software Engineering
- URL: http://arxiv.org/abs/2507.12483v1
- Date: Mon, 14 Jul 2025 14:28:37 GMT
- Title: A Survey of Reinforcement Learning for Software Engineering
- Authors: Dong Wang, Hanmo You, Lingwei Zhu, Kaiwei Lin, Zheng Chen, Chen Yang, Junji Yu, Zan Wang, Junjie Chen,
- Abstract summary: Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential decision-making.<n>We reviewed 115 peer-reviewed studies published across 22 premier software engineering venues since the introduction of Deep Reinforcement Learning (DRL) in 2015.<n>We identified open challenges and proposed future research directions to guide and inspire ongoing work in this evolving area.
- Score: 14.709084727619121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential decision-making and has attracted growing interest across various domains, particularly following the advent of Deep Reinforcement Learning (DRL) in 2015. Simultaneously, the rapid advancement of Large Language Models (LLMs) has further fueled interest in integrating RL with LLMs to enable more adaptive and intelligent systems. In the field of software engineering (SE), the increasing complexity of systems and the rising demand for automation have motivated researchers to apply RL to a broad range of tasks, from software design and development to quality assurance and maintenance. Despite growing research in RL-for-SE, there remains a lack of a comprehensive and systematic survey of this evolving field. To address this gap, we reviewed 115 peer-reviewed studies published across 22 premier SE venues since the introduction of DRL. We conducted a comprehensive analysis of publication trends, categorized SE topics and RL algorithms, and examined key factors such as dataset usage, model design and optimization, and evaluation practices. Furthermore, we identified open challenges and proposed future research directions to guide and inspire ongoing work in this evolving area. To summarize, this survey offers the first systematic mapping of RL applications in software engineering, aiming to support both researchers and practitioners in navigating the current landscape and advancing the field. Our artifacts are publicly available: https://github.com/KaiWei-Lin-lanina/RL4SE.
Related papers
- Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
arXiv Detail & Related papers (2025-07-17T14:22:24Z) - A Survey of Reinforcement Learning for Optimization in Automation [0.0]
Review article examines the current landscape of RL within automation, with a particular focus on its roles in manufacturing, energy systems, and robotics.<n>It discusses state-of-the-art methods, major challenges, and upcoming avenues of research within each sector, highlighting RL's capacity to solve intricate optimization challenges.
arXiv Detail & Related papers (2025-02-13T15:40:39Z) - Deploying Large Language Models With Retrieval Augmented Generation [0.21485350418225244]
Retrieval Augmented Generation has emerged as a key approach for integrating knowledge from data sources outside of the large language model's training set.
We present insights from the development and field-testing of a pilot project that integrates LLMs with RAG for information retrieval.
arXiv Detail & Related papers (2024-11-07T22:11:51Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.<n>DRL faces certain limitations, including low sample efficiency and poor generalization.<n>We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
Evolutionary Reinforcement Learning (ERL) integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization.
This survey offers a comprehensive overview of the diverse research branches in ERL.
arXiv Detail & Related papers (2024-01-22T14:06:37Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - Ensemble Reinforcement Learning: A Survey [43.17635633600716]
Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems.
In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity.
ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities.
arXiv Detail & Related papers (2023-03-05T09:26:44Z) - Pretraining in Deep Reinforcement Learning: A Survey [17.38360092869849]
Pretraining has shown to be effective in acquiring transferable knowledge.
Due to the nature of reinforcement learning, pretraining in this field is faced with unique challenges.
arXiv Detail & Related papers (2022-11-08T02:17:54Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.