Ensemble Reinforcement Learning: A Survey
- URL: http://arxiv.org/abs/2303.02618v3
- Date: Wed, 13 Dec 2023 13:27:25 GMT
- Title: Ensemble Reinforcement Learning: A Survey
- Authors: Yanjie Song, P. N. Suganthan, Witold Pedrycz, Junwei Ou, Yongming He,
Yingwu Chen, Yutong Wu
- Abstract summary: Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems.
In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity.
ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities.
- Score: 43.17635633600716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has emerged as a highly effective technique for
addressing various scientific and applied problems. Despite its success,
certain complex tasks remain challenging to be addressed solely with a single
model and algorithm. In response, ensemble reinforcement learning (ERL), a
promising approach that combines the benefits of both RL and ensemble learning
(EL), has gained widespread popularity. ERL leverages multiple models or
training algorithms to comprehensively explore the problem space and possesses
strong generalization capabilities. In this study, we present a comprehensive
survey on ERL to provide readers with an overview of recent advances and
challenges in the field. Firstly, we provide an introduction to the background
and motivation for ERL. Secondly, we conduct a detailed analysis of strategies
such as model selection and combination that have been successfully implemented
in ERL. Subsequently, we explore the application of ERL, summarize the
datasets, and analyze the algorithms employed. Finally, we outline several open
questions and discuss future research directions of ERL. By offering guidance
for future scientific research and engineering applications, this survey
significantly contributes to the advancement of ERL.
Related papers
- Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.
DRL faces certain limitations, including low sample efficiency and poor generalization.
We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
arXiv Detail & Related papers (2024-03-30T08:28:08Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
Evolutionary Reinforcement Learning (ERL) integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization.
This survey offers a comprehensive overview of the diverse research branches in ERL.
arXiv Detail & Related papers (2024-01-22T14:06:37Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - Evolutionary Reinforcement Learning: A Survey [31.112066295496003]
Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments.
This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL)
arXiv Detail & Related papers (2023-03-07T01:38:42Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Pretraining in Deep Reinforcement Learning: A Survey [17.38360092869849]
Pretraining has shown to be effective in acquiring transferable knowledge.
Due to the nature of reinforcement learning, pretraining in this field is faced with unique challenges.
arXiv Detail & Related papers (2022-11-08T02:17:54Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.