Sporadic Federated Learning Approach in Quantum Environment to Tackle Quantum Noise
- URL: http://arxiv.org/abs/2507.12492v1
- Date: Tue, 15 Jul 2025 20:30:11 GMT
- Title: Sporadic Federated Learning Approach in Quantum Environment to Tackle Quantum Noise
- Authors: Ratun Rahman, Atit Pokharel, Dinh C. Nguyen,
- Abstract summary: SpoQFL dynamically adjusts training strategies based on noise fluctuations.<n>Experiments on real-world datasets demonstrate that SpoQFL significantly outperforms conventional QFL approaches.
- Score: 1.2026018242953707
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum Federated Learning (QFL) is an emerging paradigm that combines quantum computing and federated learning (FL) to enable decentralized model training while maintaining data privacy over quantum networks. However, quantum noise remains a significant barrier in QFL, since modern quantum devices experience heterogeneous noise levels due to variances in hardware quality and sensitivity to quantum decoherence, resulting in inadequate training performance. To address this issue, we propose SpoQFL, a novel QFL framework that leverages sporadic learning to mitigate quantum noise heterogeneity in distributed quantum systems. SpoQFL dynamically adjusts training strategies based on noise fluctuations, enhancing model robustness, convergence stability, and overall learning efficiency. Extensive experiments on real-world datasets demonstrate that SpoQFL significantly outperforms conventional QFL approaches, achieving superior training performance and more stable convergence.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Iterative Quantum Feature Maps [0.0]
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks.<n> deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints.<n>We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights.
arXiv Detail & Related papers (2025-06-24T09:40:10Z) - Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimizing Quantum Federated Learning Based on Federated Quantum Natural
Gradient Descent [17.05322956052278]
We propose an efficient optimization algorithm, namely federated quantum natural descent (FQNGD)
Compared with gradient descent methods like Adam and Adagrad, the FQNGD algorithm admits much fewer training for the QFL to get converged.
Our experiments on a handwritten digit classification dataset justify the effectiveness of the FQNGD for the QFL framework.
arXiv Detail & Related papers (2023-02-27T11:34:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Federated Quantum Natural Gradient Descent for Quantum Federated
Learning [7.028664795605032]
In this work, we put forth an efficient learning algorithm, namely federated quantum natural gradient descent (FQNGD)
The FQNGD algorithm admits much fewer training iterations for the QFL model to get converged.
Compared with other federated learning algorithms, our experiments on a handwritten digit classification dataset corroborate the effectiveness of the FQNGD algorithm for the QFL.
arXiv Detail & Related papers (2022-08-15T07:17:11Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.