Federated Quantum Natural Gradient Descent for Quantum Federated
Learning
- URL: http://arxiv.org/abs/2209.00564v1
- Date: Mon, 15 Aug 2022 07:17:11 GMT
- Title: Federated Quantum Natural Gradient Descent for Quantum Federated
Learning
- Authors: Jun Qi
- Abstract summary: In this work, we put forth an efficient learning algorithm, namely federated quantum natural gradient descent (FQNGD)
The FQNGD algorithm admits much fewer training iterations for the QFL model to get converged.
Compared with other federated learning algorithms, our experiments on a handwritten digit classification dataset corroborate the effectiveness of the FQNGD algorithm for the QFL.
- Score: 7.028664795605032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The heart of Quantum Federated Learning (QFL) is associated with a
distributed learning architecture across several local quantum devices and a
more efficient training algorithm for the QFL is expected to minimize the
communication overhead among different quantum participants. In this work, we
put forth an efficient learning algorithm, namely federated quantum natural
gradient descent (FQNGD), applied in a QFL framework which consists of the
variational quantum circuit (VQC)-based quantum neural networks (QNN). The
FQNGD algorithm admits much fewer training iterations for the QFL model to get
converged and it can significantly reduce the total communication cost among
local quantum devices. Compared with other federated learning algorithms, our
experiments on a handwritten digit classification dataset corroborate the
effectiveness of the FQNGD algorithm for the QFL in terms of a faster
convergence rate on the training dataset and higher accuracy on the test one.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Optimizing Quantum Federated Learning Based on Federated Quantum Natural
Gradient Descent [17.05322956052278]
We propose an efficient optimization algorithm, namely federated quantum natural descent (FQNGD)
Compared with gradient descent methods like Adam and Adagrad, the FQNGD algorithm admits much fewer training for the QFL to get converged.
Our experiments on a handwritten digit classification dataset justify the effectiveness of the FQNGD for the QFL framework.
arXiv Detail & Related papers (2023-02-27T11:34:16Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.