Inverse Physics-informed neural networks procedure for detecting noise in open quantum systems
- URL: http://arxiv.org/abs/2507.12552v1
- Date: Wed, 16 Jul 2025 18:03:48 GMT
- Title: Inverse Physics-informed neural networks procedure for detecting noise in open quantum systems
- Authors: Gubio G. de Lima, Iann Cunha, Leonardo Kleber Castelano,
- Abstract summary: We extend the inverse physics-informed neural network (referred to as PINNverse) framework to open quantum systems governed by Lindblad master equations.<n>We demonstrate the effectiveness and robustness of the approach through numerical simulations of two-qubit open systems.<n>Our results show that PINNverse provides a scalable and noise-resilient framework for quantum system identification, with potential applications in quantum control and error mitigation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate characterization of quantum systems is essential for the development of quantum technologies, particularly in the noisy intermediate-scale quantum (NISQ) era. While traditional methods for Hamiltonian learning and noise characterization often require extensive measurements and scale poorly with system size, machine learning approaches offer promising alternatives. In this work, we extend the inverse physics-informed neural network (referred to as PINNverse) framework to open quantum systems governed by Lindblad master equations. By incorporating both coherent and dissipative dynamics into the neural network training, our method enables simultaneous identification of Hamiltonian parameters and decay rates from noisy experimental data. We demonstrate the effectiveness and robustness of the approach through numerical simulations of two-qubit open systems. Our results show that PINNverse provides a scalable and noise-resilient framework for quantum system identification, with potential applications in quantum control and error mitigation.
Related papers
- Non-perturbative switching rates in bistable open quantum systems: from driven Kerr oscillators to dissipative cat qubits [72.41778531863143]
We use path integral techniques to predict the switching rate in a single-mode bistable open quantum system.<n>Our results open new avenues for exploring switching phenomena in multistable single- and many-body open quantum systems.
arXiv Detail & Related papers (2025-07-24T18:01:36Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
We develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation.<n>We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory.<n>These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
arXiv Detail & Related papers (2025-03-28T04:43:24Z) - Noise-resistant adaptive Hamiltonian learning [30.632260870411177]
An adaptive Hamiltonian learning (AHL) model for data analysis and quantum state simulation is proposed to overcome problems such as low efficiency.<n>A noise-resistant quantum neural network (RQNN) based on AHL is developed, which improves the noise robustness of the quantum neural network.
arXiv Detail & Related papers (2025-01-14T11:12:59Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.<n>By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.<n>We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Machine learning approach for quantum non-Markovian noise classification [1.2891210250935146]
We show that machine learning and artificial neural network models can be used to classify noisy quantum dynamics.
Our approach is expected to find direct application in a vast number of experimental schemes and also for the noise benchmarking of the already available noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2021-01-08T20:56:56Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.