論文の概要: Rel-HNN: Split Parallel Hypergraph Neural Network for Learning on Relational Databases
- arxiv url: http://arxiv.org/abs/2507.12562v1
- Date: Wed, 16 Jul 2025 18:20:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.240641
- Title: Rel-HNN: Split Parallel Hypergraph Neural Network for Learning on Relational Databases
- Title(参考訳): Rel-HNN:関係データベースによる学習のための分割並列ハイパーグラフニューラルネットワーク
- Authors: Md. Tanvir Alam, Md. Ahasanul Alam, Md Mahmudur Rahman, Md. Mosaddek Khan,
- Abstract要約: データベースのフラット化は、ディープラーニングモデルに課題をもたらす。
我々はrel-HNNと呼ばれる新しいハイパーグラフベースのフレームワークを提案する。
rel-HNNは,分類タスクと回帰タスクの両方において,既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.6423651166048874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational databases (RDBs) are ubiquitous in enterprise and real-world applications. Flattening the database poses challenges for deep learning models that rely on fixed-size input representations to capture relational semantics from the structured nature of relational data. Graph neural networks (GNNs) have been proposed to address this, but they often oversimplify relational structures by modeling all the tuples as monolithic nodes and ignoring intra-tuple associations. In this work, we propose a novel hypergraph-based framework, that we call rel-HNN, which models each unique attribute-value pair as a node and each tuple as a hyperedge, enabling the capture of fine-grained intra-tuple relationships. Our approach learns explicit multi-level representations across attribute-value, tuple, and table levels. To address the scalability challenges posed by large RDBs, we further introduce a split-parallel training algorithm that leverages multi-GPU execution for efficient hypergraph learning. Extensive experiments on real-world and benchmark datasets demonstrate that rel-HNN significantly outperforms existing methods in both classification and regression tasks. Moreover, our split-parallel training achieves substantial speedups -- up to 3.18x for learning on relational data and up to 2.94x for hypergraph learning -- compared to conventional single-GPU execution.
- Abstract(参考訳): リレーショナルデータベース(RDB)は、企業や現実世界のアプリケーションにおいてユビキタスである。
データベースのフラット化は、リレーショナルデータの構造化された性質からリレーショナルセマンティクスをキャプチャするために、固定サイズの入力表現に依存するディープラーニングモデルに課題をもたらす。
グラフニューラルネットワーク(GNN)はこの問題に対処するために提案されているが、すべてのタプルをモノリシックノードとしてモデル化し、タプル内の関連を無視して、リレーショナル構造を単純化することが多い。
本研究では,各属性値対をノードとして,各タプルをハイパーエッジとしてモデル化し,微粒なタプル内関係の取得を可能にする,rel-HNNと呼ばれる新しいハイパーグラフベースのフレームワークを提案する。
提案手法は属性値,タプル,テーブルレベルにまたがる明示的なマルチレベル表現を学習する。
大規模RDBがもたらすスケーラビリティの課題に対処するため,マルチGPU実行を利用した分割並列学習アルゴリズムを導入し,高速なハイパーグラフ学習を実現する。
実世界のデータセットとベンチマークデータセットの大規模な実験により、rel-HNNは、分類タスクと回帰タスクの両方において、既存のメソッドを著しく上回っていることが示された。
さらに、私たちのスプリット並列トレーニングでは、従来のシングルGPU実行と比較して、リレーショナルデータの学習に最大3.18倍、ハイパーグラフ学習に最大2.94倍という大幅なスピードアップを実現しています。
関連論文リスト
- Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
グラフ機械学習は、任意のグラフ構造化データで学習するモデルの能力を大幅に向上させた。
従来の工学的特徴を伴わない'関係エンティティグラフ'のエンドツーエンド表現を可能にする新しい青写真を提案する。
本稿では、大規模マルチテーブル統合や、時間力学と異種データのモデリングの複雑さなど、重要な課題について論じる。
論文 参考訳(メタデータ) (2025-06-19T23:51:38Z) - Joint Relational Database Generation via Graph-Conditional Diffusion Models [44.06390394789874]
プライバシのデータリリースや実際のデータセットといったアプリケーションでは、データベース(RDB)の生成モデルの構築が重要です。
従来はシングルテーブル生成にフォーカスするか、あるいはテーブルの順序を固定しテーブルを逐次生成する自動回帰因子化に依存していた。
我々は、RDB内のすべてのテーブルを秩序を課すことなく、共同でモデリングするという、根本的に異なるアプローチを提案する。
論文 参考訳(メタデータ) (2025-05-22T11:12:56Z) - RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
RelGNNはリレーショナルデータベースから構築されたグラフのユニークな構造特性を活用するために特別に設計された新しいGNNフレームワークである。
RelGNNは、Relbench(Fey et al., 2024)から30の多様な実世界のタスクで評価され、ほとんどのタスクで最先端のパフォーマンスを実現し、最大25%の改善を実現している。
論文 参考訳(メタデータ) (2025-02-10T18:58:40Z) - Federated Hypergraph Learning: Hyperedge Completion with Local Differential Privacy [6.295242666794106]
FedHGLは、複数のクライアントにわたる包括的なハイパーグラフニューラルネットワークを協調的にトレーニングするように設計されている。
クロスクライアント機能アグリゲーションは中央サーバで実行され、クライアントがこの情報を活用できるように配布される。
論文 参考訳(メタデータ) (2024-08-09T16:31:41Z) - Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
本稿では,グラフニューラルネットワーク(GNN)技術の進歩を活用するために,パフォーマンスデータをグラフに変換する新しいアイデアを提案する。
ソーシャルネットワークのような他の機械学習アプリケーションドメインとは対照的に、グラフは提供されない。
我々は,GNNから生成された埋め込みの有効性を,単純なフィードフォワードニューラルネットワークによる回帰処理の性能評価に基づいて評価した。
論文 参考訳(メタデータ) (2024-01-19T16:34:37Z) - Self-Supervised Pretraining for Heterogeneous Hypergraph Neural Networks [9.987252149421982]
異種HyperGNNのための自己教師型事前学習フレームワークを提案する。
本手法は,データ内のエンティティ間の高次関係を,自己教師型で効果的に捉えることができる。
実験の結果,提案するフレームワークは,様々なダウンストリームタスクにおいて,最先端のベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-19T16:34:56Z) - SPARE: A Single-Pass Neural Model for Relational Databases [36.55513135391452]
我々は、GNNと同様の精度を提供しながら、RDB上で効率的にトレーニングできる新しいニューラルネットワーククラスであるSPAREを提案する。
GNNとは異なる効率的なトレーニングを可能にするため、SPAREでは、RDB内のデータが予測正則構造を持つという事実を活用している。
論文 参考訳(メタデータ) (2023-10-20T15:23:17Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
大規模事前学習言語モデル(PLM)は、従来のニューラルネットワーク手法と比較して圧倒的な性能を示している。
階層的および領域的関係情報の両方を抽出する階層的関係知識蒸留法(HRKD)を提案する。
論文 参考訳(メタデータ) (2021-10-16T11:23:02Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) はハイパーグラフ表現学習のためのデファクト手法である。
本稿では,各ハイパーグラフからのマルチモーダル情報を効果的に融合できるResidual enhanced Multi-Hypergraph Neural Networkを提案する。
論文 参考訳(メタデータ) (2021-05-02T14:53:32Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。