論文の概要: RelGNN: Composite Message Passing for Relational Deep Learning
- arxiv url: http://arxiv.org/abs/2502.06784v2
- Date: Fri, 06 Jun 2025 19:36:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:46.877031
- Title: RelGNN: Composite Message Passing for Relational Deep Learning
- Title(参考訳): RelGNN:リレーショナルディープラーニングのための複合メッセージパッシング
- Authors: Tianlang Chen, Charilaos Kanatsoulis, Jure Leskovec,
- Abstract要約: RelGNNはリレーショナルデータベースから構築されたグラフのユニークな構造特性を活用するために特別に設計された新しいGNNフレームワークである。
RelGNNは、Relbench(Fey et al., 2024)から30の多様な実世界のタスクで評価され、ほとんどのタスクで最先端のパフォーマンスを実現し、最大25%の改善を実現している。
- 参考スコア(独自算出の注目度): 56.48834369525997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive tasks on relational databases are critical in real-world applications spanning e-commerce, healthcare, and social media. To address these tasks effectively, Relational Deep Learning (RDL) encodes relational data as graphs, enabling Graph Neural Networks (GNNs) to exploit relational structures for improved predictions. However, existing RDL methods often overlook the intrinsic structural properties of the graphs built from relational databases, leading to modeling inefficiencies, particularly in handling many-to-many relationships. Here we introduce RelGNN, a novel GNN framework specifically designed to leverage the unique structural characteristics of the graphs built from relational databases. At the core of our approach is the introduction of atomic routes, which are simple paths that enable direct single-hop interactions between the source and destination nodes. Building upon these atomic routes, RelGNN designs new composite message passing and graph attention mechanisms that reduce redundancy, highlight key signals, and enhance predictive accuracy. RelGNN is evaluated on 30 diverse real-world tasks from Relbench (Fey et al., 2024), and achieves state-of-the-art performance on the vast majority of tasks, with improvements of up to 25%. Code is available at https://github.com/snap-stanford/RelGNN.
- Abstract(参考訳): リレーショナルデータベースの予測タスクは、eコマース、ヘルスケア、ソーシャルメディアにまたがる現実世界のアプリケーションにおいて重要である。
これらの課題を効果的に解決するために、リレーショナルディープラーニング(RDL)はリレーショナルデータをグラフとしてエンコードし、グラフニューラルネットワーク(GNN)がリレーショナル構造を利用して予測を改善する。
しかし、既存のRDL法は、リレーショナルデータベースから構築されたグラフの固有の構造的特性を見落とし、特に多対多の関係を扱う際に、非効率なモデリングにつながることが多い。
本稿では、リレーショナルデータベースから構築されたグラフのユニークな構造特性を活用するために特別に設計された、新しいGNNフレームワークであるRelGNNを紹介する。
このアプローチの核心は、ソースと宛先ノード間の直接シングルホップ相互作用を可能にする単純なパスであるアトミックルートの導入である。
これらの原子経路に基づいて、RelGNNは新しい複合メッセージパッシングとグラフアテンション機構を設計し、冗長性を低減し、キーシグナルをハイライトし、予測精度を高める。
RelGNNは、Relbench(Fey et al , 2024)から30の多様な実世界のタスクで評価され、ほとんどのタスクで最先端のパフォーマンスを実現し、最大25%の改善を実現している。
コードはhttps://github.com/snap-stanford/RelGNNで入手できる。
関連論文リスト
- ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion [15.33100217104504]
本稿では,大規模グラフのための新しいフレームワークであるScaleGNNを提案する。
同時に、マルチレベルグラフ機能を適応的に融合することで、両方の課題に対処する。
我々の手法は、精度と計算効率の両面で最先端のGNNモデルより一貫して優れている。
論文 参考訳(メタデータ) (2025-04-22T14:05:11Z) - Boosting Relational Deep Learning with Pretrained Tabular Models [18.34233986830027]
グラフニューラルネットワーク(GNN)は、これらの関係をモデル化することで本質的に魅力的な代替手段を提供する。
我々のフレームワークは、GNNと比較して最大33%のパフォーマンス改善と526タイムの推論スピードアップを実現しています。
論文 参考訳(メタデータ) (2025-04-07T11:19:04Z) - A Transfer Framework for Enhancing Temporal Graph Learning in Data-Scarce Settings [30.97142882931946]
エンティティ間の動的相互作用は、ソーシャルプラットフォーム、金融システム、ヘルスケア、電子商取引のようなドメインで一般的である。
TGNNはそのような予測タスクに対して強力な結果を得ているが、通常、現実世界のシナリオで制限される広範なトレーニングデータを必要とする。
本稿では,ノード表現を関連する特徴から2部符号化機構によって切り離す新しい転送手法を提案する。
論文 参考訳(メタデータ) (2025-03-02T11:10:29Z) - COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
我々は,ノード分類タスクとグラフ分類タスクの両方に対して,対実的な説明を生成する新しいGNN説明器であるCOMBINEXを提案する。
構造的および特徴に基づく変更を独立に扱う従来の方法とは異なり、COMBINEXはエッジとノードの特徴への修正を最適にバランスする。
この統一されたアプローチは、モデルの予測を反転させるために必要な最小限かつ効果的な変更を保証し、現実的で解釈可能な反事実をもたらす。
論文 参考訳(メタデータ) (2025-02-14T12:17:24Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
本稿では,グラフニューラルネットワーク(GNN)の解釈可能性向上手法を提案する。
最終結果は、予測タスクに本質的に関連付けられたサブグラフに対応する物理空間内の領域を分離する解釈可能なGNNモデルである。
解釈可能なGNNは、推論中に予測される予測エラーの大部分に対応するグラフノードを特定するためにも使用できる。
論文 参考訳(メタデータ) (2023-11-13T18:37:07Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
グラフニューラルネットワーク(GNN)は、関係帰納バイアスに基づくグラフ構造を用いて基本ニューラルネットワーク(NN)を拡張する(ホモフィリー仮定)
最近の研究は、NNと比較してパフォーマンスが不十分な、非自明なデータセットのセットを特定している。
論文 参考訳(メタデータ) (2022-10-14T08:00:26Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Graph Ordering Attention Networks [22.468776559433614]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題でうまく使われている。
近隣ノード間のインタラクションをキャプチャする新しいGNNコンポーネントであるグラフ順序付け注意層(GOAT)を導入する。
GOATレイヤは、複雑な情報をキャプチャするグラフメトリクスのモデリングにおけるパフォーマンスの向上を示す。
論文 参考訳(メタデータ) (2022-04-11T18:13:19Z) - ARM-Net: Adaptive Relation Modeling Network for Structured Data [29.94433633729326]
ARM-Netは、構造化データに適した適応関係モデリングネットワークであり、リレーショナルデータのためのARM-Netに基づく軽量フレームワークARMORである。
ARM-Netは既存のモデルより一貫して優れており、データセットに対してより解釈可能な予測を提供する。
論文 参考訳(メタデータ) (2021-07-05T07:37:24Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。