Manipulation Attacks by Misaligned AI: Risk Analysis and Safety Case Framework
- URL: http://arxiv.org/abs/2507.12872v1
- Date: Thu, 17 Jul 2025 07:45:53 GMT
- Title: Manipulation Attacks by Misaligned AI: Risk Analysis and Safety Case Framework
- Authors: Rishane Dassanayake, Mario Demetroudi, James Walpole, Lindley Lentati, Jason R. Brown, Edward James Young,
- Abstract summary: Humans are often the weakest link in cybersecurity systems.<n>A misaligned AI system may seek to undermine human oversight by manipulating employees.<n>No systematic framework exists for assessing and mitigating these risks.<n>This paper provides the first systematic methodology for integrating manipulation risk into AI safety governance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frontier AI systems are rapidly advancing in their capabilities to persuade, deceive, and influence human behaviour, with current models already demonstrating human-level persuasion and strategic deception in specific contexts. Humans are often the weakest link in cybersecurity systems, and a misaligned AI system deployed internally within a frontier company may seek to undermine human oversight by manipulating employees. Despite this growing threat, manipulation attacks have received little attention, and no systematic framework exists for assessing and mitigating these risks. To address this, we provide a detailed explanation of why manipulation attacks are a significant threat and could lead to catastrophic outcomes. Additionally, we present a safety case framework for manipulation risk, structured around three core lines of argument: inability, control, and trustworthiness. For each argument, we specify evidence requirements, evaluation methodologies, and implementation considerations for direct application by AI companies. This paper provides the first systematic methodology for integrating manipulation risk into AI safety governance, offering AI companies a concrete foundation to assess and mitigate these threats before deployment.
Related papers
- When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems [78.04679174291329]
We introduce a proof-of-concept to simulate the risks of malicious multi-agent systems (MAS)<n>We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud.<n>Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones.
arXiv Detail & Related papers (2025-07-19T15:17:30Z) - Systematic Hazard Analysis for Frontier AI using STPA [0.0]
frontier AI companies currently do not describe in detail any structured approach to identifying and analysing hazards.<n>A (Systems-Theoretic Process Analysis) is a systematic methodology for identifying how complex systems can become unsafe, leading to hazards.<n>We evaluateA's ability to broaden the scope, improve traceability and strengthen the robustness of safety assurance for frontier AI systems.
arXiv Detail & Related papers (2025-06-02T15:28:34Z) - Offensive Security for AI Systems: Concepts, Practices, and Applications [0.0]
Traditional defensive measures often fall short against the unique and evolving threats facing AI-driven technologies.<n>This paper emphasizes proactive threat simulation and adversarial testing to uncover vulnerabilities throughout the AI lifecycle.
arXiv Detail & Related papers (2025-05-09T18:58:56Z) - An Approach to Technical AGI Safety and Security [72.83728459135101]
We develop an approach to address the risk of harms consequential enough to significantly harm humanity.<n>We focus on technical approaches to misuse and misalignment.<n>We briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
arXiv Detail & Related papers (2025-04-02T15:59:31Z) - AI threats to national security can be countered through an incident regime [55.2480439325792]
We propose a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems.<n>Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident'<n>The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures.
arXiv Detail & Related papers (2025-03-25T17:51:50Z) - Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path? [37.13209023718946]
Unchecked AI agency poses significant risks to public safety and security.<n>We discuss how these risks arise from current AI training methods.<n>We propose a core building block for further advances the development of a non-agentic AI system.
arXiv Detail & Related papers (2025-02-21T18:28:36Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
We argue that adapting existing processes for AI security reporting is doomed to fail due to fundamental shortcomings for the distinctive characteristics of AI systems.<n>Based on our proposal to address these shortcomings, we discuss an approach to AI security reporting and how the new AI paradigm, AI agents, will further reinforce the need for specialized AI security incident reporting advancements.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Affirmative safety: An approach to risk management for high-risk AI [6.133009503054252]
We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety.
We propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds.
arXiv Detail & Related papers (2024-04-14T20:48:55Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.