Optimized Measurements of Rabi model in a linear potential under Strong Doppler shifts
- URL: http://arxiv.org/abs/2507.12971v1
- Date: Thu, 17 Jul 2025 10:17:36 GMT
- Title: Optimized Measurements of Rabi model in a linear potential under Strong Doppler shifts
- Authors: Dongyang Yu,
- Abstract summary: This work lays a theoretical foundation for developing high-sensitivity, noise-resistant atom gravimeters leveraging external-state quantum resources.<n>By integrating Fisher information theory, we specifically demonstrate the near-universality and high metrological gain of phase rotation measurement protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Harnessing quantum resources in the atomic external degrees of freedom--particularly matter-wave states with broad momentum spreads--holds significant potential for enhancing the sensitivity of Kasevich-Chu atom gravimeters at the standard quantum limit. However, a fully quantum-mechanical investigation of the critical Doppler effect inherent to this approach remains lacking. Employing the SU(2) Lie group theory, we derive a generic Riccati equation governing the unitary dynamics of the Rabi model within a linear potential and analyze the Doppler effect impact on Rabi oscillations because of the strong coupling between the internal and external states. Furthermore, by integrating Fisher information theory, we specifically demonstrate the near-universality and high metrological gain of phase rotation measurement protocols under strong Doppler broadening. This theoretical work provides insightful implications for boarder generalization, such as extensions to finite-temperature scenarios or multi-pulse sequences--exemplified by the $\pi/2-\pi-\pi/2$ pulse sequence characteristic of Kasevich-Chu atom gravimeters. Thus, this work lays a theoretical foundation for developing high-sensitivity, noise-resistant atom gravimeters leveraging external-state quantum resources.
Related papers
- Universal scaling of quantum caustics in the dynamics of interacting particles [0.0]
We investigate the dynamics initiated by a local quench in a spin chain, resulting in outward-propagating excitations that create a distinct caustic pattern.
We calculate the scaling of the first two maxima of the interference fringes dressing the caustic, finding a universal exponent of 2/3, associated with an Airy function catastrophe.
This robust scaling persists even under perturbations that break the integrability of the model.
arXiv Detail & Related papers (2024-10-09T12:00:17Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Cavity-renormalized quantum criticality in a honeycomb bilayer
antiferromagnet [0.3359875577705538]
We investigate the fate of a quantum critical antiferromagnet coupled to an optical cavity field.
Using unbiased quantum Monte Carlo simulations, we compute the scaling behavior of the magnetic structure factor.
Our microscopic model is based on realistic parameters for two-dimensional magnetic quantum materials.
arXiv Detail & Related papers (2023-02-16T19:00:45Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - An analytical theory of CEP-dependent coherence driven by few-cycle
pulses [28.971848801529205]
We present an analytical theory that describes a two-level atom driven by a far-off-resonance, few-cycle square pulse.
Despite its mathematical simplicity, the relation is able to capture some of the key features of the interaction.
The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum coherence.
arXiv Detail & Related papers (2021-01-13T05:16:12Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.