論文の概要: Revisiting Reliability in the Reasoning-based Pose Estimation Benchmark
- arxiv url: http://arxiv.org/abs/2507.13314v1
- Date: Thu, 17 Jul 2025 17:33:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.597114
- Title: Revisiting Reliability in the Reasoning-based Pose Estimation Benchmark
- Title(参考訳): Reasoning-based Pose Estimation ベンチマークにおける信頼性の再検討
- Authors: Junsu Kim, Naeun Kim, Jaeho Lee, Incheol Park, Dongyoon Han, Seungryul Baek,
- Abstract要約: 推論に基づくポーズ推定(RPE)ベンチマークは、ポーズ対応大規模言語モデル(MLLM)の広く採用されている評価標準として登場した。
公平で一貫した定量的評価を妨げる批判的かつベンチマーク品質の問題を特定しました。
- 参考スコア(独自算出の注目度): 27.134554623769898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reasoning-based pose estimation (RPE) benchmark has emerged as a widely adopted evaluation standard for pose-aware multimodal large language models (MLLMs). Despite its significance, we identified critical reproducibility and benchmark-quality issues that hinder fair and consistent quantitative evaluations. Most notably, the benchmark utilizes different image indices from those of the original 3DPW dataset, forcing researchers into tedious and error-prone manual matching processes to obtain accurate ground-truth (GT) annotations for quantitative metrics (\eg, MPJPE, PA-MPJPE). Furthermore, our analysis reveals several inherent benchmark-quality limitations, including significant image redundancy, scenario imbalance, overly simplistic poses, and ambiguous textual descriptions, collectively undermining reliable evaluations across diverse scenarios. To alleviate manual effort and enhance reproducibility, we carefully refined the GT annotations through meticulous visual matching and publicly release these refined annotations as an open-source resource, thereby promoting consistent quantitative evaluations and facilitating future advancements in human pose-aware multimodal reasoning.
- Abstract(参考訳): 推論に基づくポーズ推定(RPE)ベンチマークは、ポーズ対応マルチモーダル大言語モデル(MLLM)の広く採用されている評価標準として登場した。
その重要性にもかかわらず、公正で一貫した定量的評価を妨げる重要な再現性とベンチマーク品質の問題を特定した。
最も注目すべきは、このベンチマークは元の3DPWデータセットと異なる画像指標を使用しており、研究者は退屈でエラーを起こしやすい手動マッチングプロセスを強制し、量的メトリクス(\eg, MPJPE, PA-MPJPE)の正確な基底真実(GT)アノテーションを得る。
さらに、画像の冗長性、シナリオの不均衡、過度に単純化されたポーズ、曖昧なテキスト記述など、ベンチマーク品質に固有のいくつかの制限を明らかにし、様々なシナリオにおける信頼性評価を損なう。
手動による作業の軽減と再現性の向上を目的として,厳密な視覚的マッチングによりGTアノテーションを精査し,これらのアノテーションをオープンソースリソースとして公開し,一貫した定量的評価を促進し,人間のポーズ対応マルチモーダル推論における今後の進歩を促進する。
関連論文リスト
- Evaluating Variance in Visual Question Answering Benchmarks [0.9065034043031668]
視覚的質問応答(VQA)のための強力なツールとしてマルチモーダル大言語モデル(MLLM)が登場している。
それらの進歩にもかかわらず、VQAベンチマークにおけるMLLMの評価は、しばしば点推定に依存する。
本稿では、14の広く使用されているVQAベンチマークを分析し、これらの問題を批判的に検証する。
論文 参考訳(メタデータ) (2025-08-04T17:37:13Z) - T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation [60.620408007636016]
T2I-Eval-R1は,大まかな品質スコアのみを用いて,オープンソースのMLLMを訓練する新しい強化学習フレームワークである。
提案手法では,グループ相対政策最適化を命令調整プロセスに統合し,スカラースコアと解釈可能な推論チェーンの両方を生成する。
論文 参考訳(メタデータ) (2025-05-23T13:44:59Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFYは最先端MLLMの視覚的推論能力を分離し、厳格に評価するために設計されたベンチマークである。
それぞれの問題には人手による推論パスが伴い、モデル決定プロセスの詳細な評価を初めて提供する。
本稿では,従来のモデル推論パターンにおける重要な不均衡を浮き彫りにして,単なる精度を超える視覚的推論の忠実さを評価する新しい指標を提案する。
論文 参考訳(メタデータ) (2025-03-14T16:26:11Z) - Aspect-Guided Multi-Level Perturbation Analysis of Large Language Models in Automated Peer Review [36.05498398665352]
自動ピアレビューにおいて,大規模言語モデル(LLM)の堅牢性を評価するために,アスペクト誘導多段階摂動フレームワークを提案する。
我々のフレームワークは、ピアレビュープロセスペーパー、レビュー、そして、いくつかの品質面における反論の3つの重要な要素における摂動を探求する。
論文 参考訳(メタデータ) (2025-02-18T03:50:06Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - Detecting Multimodal Situations with Insufficient Context and Abstaining from Baseless Predictions [75.45274978665684]
VLU(Vision-Language Understanding)ベンチマークには、提供されたコンテキストによってサポートされない仮定に答えが依存するサンプルが含まれている。
サンプル毎にコンテキストデータを収集し,エビデンスに基づくモデル予測を促進するためにコンテキスト選択モジュールをトレーニングする。
我々は,十分なコンテキストを欠いたサンプルを同定し,モデル精度を向上させる汎用なコンテキスト・アワレ認識検出器を開発した。
論文 参考訳(メタデータ) (2024-05-18T02:21:32Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
この研究は、LLM(Large Language Models)生成したテキストの一貫性を評価し改善する自動化フレームワークであるDCRを提案する。
本稿では,DCEからの出力を解釈可能な数値スコアに変換する自動計量変換器(AMC)を提案する。
また,本手法は出力不整合の90%近くを著しく低減し,効果的な幻覚緩和の可能性を示唆している。
論文 参考訳(メタデータ) (2024-01-04T08:34:16Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
ERASER(Comprehensiveness and sufficiency)メトリクスとEVAL-X(EVAL-X)メトリクスの2つのセットを批判的に検討する。
実験結果の予測や説明を変えることなく,モデル全体の包括性と充足率を劇的に向上させることができることを示す。
我々の結果は、現在のメトリクスが説明可能性の研究をガイドする能力に疑問を呈し、これらのメトリクスが正確に捉えるものを再評価する必要性を強調します。
論文 参考訳(メタデータ) (2023-08-28T03:03:03Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
そこで我々は,CLIPBERTScoreを提案する。
ゼロショットにおけるこの2つの指標の単純な組み合わせは、文書要約のための既存の事実度指標よりも高い相関性が得られることを示す。
本分析は,CLIPBERTScoreとそのコンポーネントの信頼性と高い相関性を示す。
論文 参考訳(メタデータ) (2022-11-04T16:50:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。