論文の概要: CaSTFormer: Causal Spatio-Temporal Transformer for Driving Intention Prediction
- arxiv url: http://arxiv.org/abs/2507.13425v1
- Date: Thu, 17 Jul 2025 17:10:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.097169
- Title: CaSTFormer: Causal Spatio-Temporal Transformer for Driving Intention Prediction
- Title(参考訳): CaSTFormer:運転意図予測のための因果時変器
- Authors: Sirui Wang, Zhou Guan, Bingxi Zhao, Tongjia Gu,
- Abstract要約: CaSTFormerは、ドライバーの行動と環境コンテキストの間の因果関係をモデル化し、堅牢な意図予測を行うトランスフォーマーである。
複雑な因果的依存関係を効果的に捉え、運転意図予測の正確性と透明性を高める。
- 参考スコア(独自算出の注目度): 4.654440732844896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of driving intention is key to enhancing the safety and interactive efficiency of human-machine co-driving systems. It serves as a cornerstone for achieving high-level autonomous driving. However, current approaches remain inadequate for accurately modeling the complex spatio-temporal interdependencies and the unpredictable variability of human driving behavior. To address these challenges, we propose CaSTFormer, a Causal Spatio-Temporal Transformer to explicitly model causal interactions between driver behavior and environmental context for robust intention prediction. Specifically, CaSTFormer introduces a novel Reciprocal Shift Fusion (RSF) mechanism for precise temporal alignment of internal and external feature streams, a Causal Pattern Extraction (CPE) module that systematically eliminates spurious correlations to reveal authentic causal dependencies, and an innovative Feature Synthesis Network (FSN) that adaptively synthesizes these purified representations into coherent spatio-temporal inferences. We evaluate the proposed CaSTFormer on the public Brain4Cars dataset, and it achieves state-of-the-art performance. It effectively captures complex causal spatio-temporal dependencies and enhances both the accuracy and transparency of driving intention prediction.
- Abstract(参考訳): 運転意図の正確な予測は、人間と機械の協調運転システムの安全性と対話性を高める鍵となる。
ハイレベルな自動運転を実現するための基盤として機能している。
しかし、現在のアプローチは、複雑な時空間依存性と予測不可能な人間の運転行動の変動を正確にモデル化するには不十分である。
これらの課題に対処するため,運転者の行動と環境環境との因果関係を,頑健な意図予測のために明示的にモデル化するCaSTFormerを提案する。
特に、CaSTFormerは、内部および外部の特徴ストリームの正確な時間的アライメントのための新しいReciprocal Shift Fusion(RSF)機構、真正因果関係を明らかにするためにスプリアス相関を体系的に排除するCausal Pattern extract(CPE)モジュール、これらの純粋表現をコヒーレント時相推論に適応的に合成する革新的なFeature Synthesis Network(FSN)を導入している。
我々は、パブリックなBrain4Carsデータセット上で提案したCaSTFormerを評価し、最先端のパフォーマンスを実現する。
複雑な因果時空間依存性を効果的に捉え、運転意図予測の正確性と透明性を高める。
関連論文リスト
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
本稿では、因果推論を利用して予測堅牢性、一般化、精度を向上させる新しい軌道予測フレームワークを提案する。
本研究は、軌跡予測の因果推論の可能性を強調し、ロバストな自律運転システムへの道を開くものである。
論文 参考訳(メタデータ) (2025-05-11T05:56:07Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
世界モデルは、マルチセンサーデータ、セマンティックキュー、時間ダイナミクスを統合する駆動環境の高忠実度表現を提供する。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
本研究では,自動車追従軌道予測のためのスケールドノイズ条件拡散モデルを提案する。
車両間の詳細な相互作用と自動車追従ダイナミクスを生成フレームワークに統合し、予測された軌跡の精度と妥当性を向上させる。
種々の実世界の運転シナリオに関する実験結果は,提案手法の最先端性能と堅牢性を示すものである。
論文 参考訳(メタデータ) (2024-11-23T23:13:45Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
本稿では,ポストクラッシュ交通予測のための新しい深層学習モデルを提案する。
提案モデルでは, 仮説的衝突介入戦略の下での交通速度の理解と予測に特化して, 処理を意識したモデルを提案する。
このモデルは、合成データと実世界のデータの両方を用いて検証され、MSCTがマルチステップ・アヘッド予測性能において最先端モデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:42:41Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction [10.814758830775727]
本研究では,自動車追従軌道予測のためのクロスアテンショントランスフォーマー拡張拡散モデル (Crossfusor) を提案する。
車両間の詳細な相互作用と自動車追従ダイナミクスを堅牢な拡散フレームワークに統合し、予測された軌道の精度と現実性を改善する。
NGSIMデータセットの実験結果から、クロスファザーは特に長期予測において最先端のモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-17T17:35:47Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by Reality [46.909086734963665]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformerは、Auto-Correlation機構を備えた、新しい分解アーキテクチャである。
長期的な予測では、Autoformerは6つのベンチマークで相対的に改善され、最先端の精度が得られる。
論文 参考訳(メタデータ) (2021-06-24T13:43:43Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。