論文の概要: Improved particle swarm optimization algorithm: multi-target trajectory optimization for swarm drones
- arxiv url: http://arxiv.org/abs/2507.13647v1
- Date: Fri, 18 Jul 2025 04:31:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.184785
- Title: Improved particle swarm optimization algorithm: multi-target trajectory optimization for swarm drones
- Title(参考訳): 粒子群最適化アルゴリズムの改良:Swarmドローンの多目標軌道最適化
- Authors: Minze Li, Wei Zhao, Ran Chen, Mingqiang Wei,
- Abstract要約: 従来のParticle Swarm Optimization (PSO) 手法は、リアルタイムシナリオにおける早期収束と遅延に苦慮している。
PSOベースのオンライントラジェクトリプランナであるPE-PSOを提案する。
遺伝的アルゴリズム(GA)に基づくタスク割り当てと分散PE-PSOを組み合わせたマルチエージェントフレームワークを開発した。
- 参考スコア(独自算出の注目度): 20.531764063763678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time trajectory planning for unmanned aerial vehicles (UAVs) in dynamic environments remains a key challenge due to high computational demands and the need for fast, adaptive responses. Traditional Particle Swarm Optimization (PSO) methods, while effective for offline planning, often struggle with premature convergence and latency in real-time scenarios. To overcome these limitations, we propose PE-PSO, an enhanced PSO-based online trajectory planner. The method introduces a persistent exploration mechanism to preserve swarm diversity and an entropy-based parameter adjustment strategy to dynamically adapt optimization behavior. UAV trajectories are modeled using B-spline curves, which ensure path smoothness while reducing optimization complexity. To extend this capability to UAV swarms, we develop a multi-agent framework that combines genetic algorithm (GA)-based task allocation with distributed PE-PSO, supporting scalable and coordinated trajectory generation. The distributed architecture allows for parallel computation and decentralized control, enabling effective cooperation among agents while maintaining real-time performance. Comprehensive simulations demonstrate that the proposed framework outperforms conventional PSO and other swarm-based planners across several metrics, including trajectory quality, energy efficiency, obstacle avoidance, and computation time. These results confirm the effectiveness and applicability of PE-PSO in real-time multi-UAV operations under complex environmental conditions.
- Abstract(参考訳): 動的環境における無人航空機(UAV)のリアルタイム軌道計画は、高い計算要求と高速かつ適応的な応答の必要性のため、依然として重要な課題である。
従来のParticle Swarm Optimization (PSO) 手法はオフライン計画に有効であるが、しばしばリアルタイムシナリオにおける早めの収束と遅延に悩まされる。
これらの制約を克服するために,PSOベースのオンライントラジェクトリプランナであるPE-PSOを提案する。
本手法では,Swarmの多様性を維持するための永続的な探索機構と,最適化動作を動的に適応するためのエントロピーに基づくパラメータ調整戦略を導入する。
UAVトラジェクトリは、最適化の複雑さを低減しつつ経路の滑らかさを保証するB-スプライン曲線を用いてモデル化される。
この能力をUAVスワムに拡張するため、遺伝的アルゴリズム(GA)に基づくタスク割り当てと分散PE-PSOを組み合わせたマルチエージェントフレームワークを開発し、スケーラブルで協調的な軌道生成をサポートする。
分散アーキテクチャは並列計算と分散制御を可能にし、リアルタイム性能を維持しながらエージェント間の効果的な協調を可能にする。
包括的シミュレーションにより,提案フレームワークは,軌道品質,エネルギー効率,障害物回避,計算時間など,従来のPSOやSwarmベースのプランナよりも優れた性能を示した。
これらの結果から,複雑な環境条件下でのマルチUAV実時間動作におけるPE-PSOの有効性と適用性が確認された。
関連論文リスト
- Hierarchical Task Offloading for UAV-Assisted Vehicular Edge Computing via Deep Reinforcement Learning [11.695622067301128]
部分オフロードに基づく2層UAV支援エッジコンピューティングアーキテクチャを提案する。
提案アーキテクチャは異種資源の効率的な統合と調整を可能にする。
提案手法は,タスク完了率,システム効率,収束速度において,いくつかのベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2025-07-08T07:10:52Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Towards Robust Spacecraft Trajectory Optimization via Transformers [17.073280827888226]
我々は,非最適制御問題をリアルタイムに解くための自律生成モデルを開発した。
我々はARTの能力を拡張し、確率制約のある最適制御問題に対処する。
この作業は、宇宙船のような安全クリティカルな自律システムにAI駆動のソリューションを確実に展開するための最初のステップである。
論文 参考訳(メタデータ) (2024-10-08T00:58:42Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning [26.10588918124538]
計算時間を短縮するために成功した戦略は、Imitation Learning (IL)を使用して専門家から高速ニューラルネットワーク(NN)ポリシーを開発することである。
結果のNNポリシは,専門家と同様のトラジェクトリを高速に生成する上で有効だが,その出力は動的実現可能性を明確に考慮していない。
本稿では,トラジェクトリ計画のための新しいILベースのアプローチであるConstraint-Guided Diffusion (CGD)を提案する。
論文 参考訳(メタデータ) (2024-05-02T21:50:26Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Efficient Real-time Path Planning with Self-evolving Particle Swarm
Optimization in Dynamic Scenarios [6.951981832970596]
操作形式(TOF)は、粒子の操作をテンソル操作に変換する。
自己進化型粒子群最適化(SEPSO)を開発した。
SEPSOはより優れたパスを生成でき、リアルタイムのパフォーマンスがかなり向上する。
論文 参考訳(メタデータ) (2023-08-20T05:31:48Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
本稿では,無人航空機(UAV)の経路計画問題に対処するため,球面ベクトルベース粒子群最適化 (SPSO) という新しいアルゴリズムを提案する。
コスト関数が最初に定式化され、経路計画がUAVの実用的で安全な運用に必要な要件と制約を組み込んだ最適化問題に変換される。
SPSOは、UAVの構成空間を効率的に探索することでコスト関数を最小化する最適経路を見つけるために使用される。
論文 参考訳(メタデータ) (2021-04-13T06:45:11Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。