Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
- URL: http://arxiv.org/abs/2507.13772v1
- Date: Fri, 18 Jul 2025 09:29:03 GMT
- Title: Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
- Authors: Abhijit Sen, Giridas Maiti, Bikram K. Parida, Bhanu P. Mishra, Mahima Arya, Denys I. Bondar,
- Abstract summary: We revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE)<n>We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach.<n>Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models.
- Score: 0.13194391758295113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.
Related papers
- Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering [59.24638672786966]
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations.<n>Existing graph neural networks (GNNs) cannot fully exploit the spectral information of the input HSI.<n>We propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels.
arXiv Detail & Related papers (2025-06-11T16:41:34Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Multi-Granularity Canonical Appearance Pooling for Remote Sensing Scene
Classification [0.34376560669160383]
We propose a novel Multi-Granularity Canonical Appearance Pooling (MG-CAP) to automatically capture the latent ontological structure of remote sensing datasets.
For each specific granularity, we discover the canonical appearance from a set of pre-defined transformations and learn the corresponding CNN features through a maxout-based Siamese style architecture.
We provide a stable solution for training the eigenvalue-decomposition function (EIG) in a GPU and demonstrate the corresponding back-propagation using matrix calculus.
arXiv Detail & Related papers (2020-04-09T11:24:00Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.