論文の概要: CPC-CMS: Cognitive Pairwise Comparison Classification Model Selection Framework for Document-level Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2507.14022v1
- Date: Fri, 18 Jul 2025 15:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.342894
- Title: CPC-CMS: Cognitive Pairwise Comparison Classification Model Selection Framework for Document-level Sentiment Analysis
- Title(参考訳): CPC-CMS:文書レベルの知覚分析のための認知的ペアワイズ分類モデル選択フレームワーク
- Authors: Jianfei Li, Kevin Kam Fung Yuen,
- Abstract要約: 本研究では,文書レベルの感情分析のための認知的ペアワイズ分類モデル選択(CPC-CMS)フレームワークを提案する。
CPCは、専門家の知識判断に基づいて、精度、精度、リコール、F1スコア、特異性、マシューズ相関係数(MCC)、コーエンのカッパ(カッパ)などの評価基準の重みを計算するために使用される。
ソーシャルメディアの3つのオープンデータセットを用いて,提案したCPC-CMSの実現可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes the Cognitive Pairwise Comparison Classification Model Selection (CPC-CMS) framework for document-level sentiment analysis. The CPC, based on expert knowledge judgment, is used to calculate the weights of evaluation criteria, including accuracy, precision, recall, F1-score, specificity, Matthews Correlation Coefficient (MCC), Cohen's Kappa (Kappa), and efficiency. Naive Bayes, Linear Support Vector Classification (LSVC), Random Forest, Logistic Regression, Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), and A Lite Bidirectional Encoder Representations from Transformers (ALBERT) are chosen as classification baseline models. A weighted decision matrix consisting of classification evaluation scores with respect to criteria weights, is formed to select the best classification model for a classification problem. Three open datasets of social media are used to demonstrate the feasibility of the proposed CPC-CMS. Based on our simulation, for evaluation results excluding the time factor, ALBERT is the best for the three datasets; if time consumption is included, no single model always performs better than the other models. The CPC-CMS can be applied to the other classification applications in different areas.
- Abstract(参考訳): 本研究では,文書レベルの感情分析のための認知的ペアワイズ分類モデル選択(CPC-CMS)フレームワークを提案する。
CPCは、専門家の知識判断に基づいて、精度、精度、リコール、F1スコア、特異性、マシューズ相関係数(MCC)、コーエンのカッパ(Kappa)、効率などの評価基準の重みを計算するために使用される。
Naive Bayes, Linear Support Vector Classification (LSVC), Random Forest, Logistic Regression, Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), A Lite Bidirectional Encoder Representations from Transformers (ALBERT)が分類ベースラインモデルとして選択されている。
基準重みに関する分類評価スコアからなる重み付き決定行列を形成し、分類問題に対する最良の分類モデルを選択する。
ソーシャルメディアの3つのオープンデータセットを用いて,提案したCPC-CMSの実現可能性を示す。
シミュレーションの結果から,ALBERTは3つのデータセットに最適であることがわかった。
CPC-CMSは、異なる分野の他の分類アプリケーションに適用することができる。
関連論文リスト
- Area under the ROC Curve has the Most Consistent Evaluation for Binary Classification [3.1850615666574806]
本研究は, 有病率の異なるデータ間でのモデル評価において, 測定値の整合性について検討する。
有病率の影響を受けない評価指標は、個々のモデルの一貫性のある評価と、モデルの集合の一貫性のあるランキングを提供する。
論文 参考訳(メタデータ) (2024-08-19T17:52:38Z) - Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems [0.9976432338233169]
RAGシステムのコンテキストにおける埋め込みモデルの類似性を評価する。
5つのデータセットで、プロプライエタリなモデルを含む埋め込みモデルのさまざまなファミリを比較します。
プロプライエタリなモデルに対するオープンソース代替案を特定でき、MistralはOpenAIモデルに最もよく似ている。
論文 参考訳(メタデータ) (2024-07-11T08:24:16Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
バイナリ分類では、正のクラスのモデルスコアが、アプリケーション要求に基づいて選択されたしきい値を超えるかどうかに基づいて、インスタンスのラベルを予測する。
しかし、モデルスコアは真の肯定率と一致しないことが多い。
これは特に、クラス間の差分サンプリングを含むトレーニングや、トレインとテスト設定間の分散ドリフトがある場合に当てはまる。
論文 参考訳(メタデータ) (2023-11-20T12:40:25Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Decision Making for Hierarchical Multi-label Classification with
Multidimensional Local Precision Rate [4.812468844362369]
我々は,各クラスの各対象に対して,多次元局所精度率 (mLPR) と呼ばれる新しい統計モデルを導入する。
我々は,mLPRの下位順序でクラス間でオブジェクトをソートするだけで,クラス階層を確実にすることができることを示す。
これに対し、階層を尊重しながら推定mLPRを用いてCATCHの実証バージョンを最大化する新しいアルゴリズムであるHierRankを導入する。
論文 参考訳(メタデータ) (2022-05-16T17:43:35Z) - Rank4Class: A Ranking Formulation for Multiclass Classification [26.47229268790206]
マルチクラス分類(MCC)は基本的な機械学習問題である。
ランキングのレンズを通した新しい定式化により,MCCの性能を向上させることは容易であることを示す。
論文 参考訳(メタデータ) (2021-12-17T19:22:37Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Active Learning++: Incorporating Annotator's Rationale using Local Model
Explanation [84.10721065676913]
アノテーションは、与えられたクエリの重要性に基づいて入力特徴をランク付けすることで、ラベルを選択するための根拠を提供することができる。
すべての委員会モデルを等しく重み付けして次の事例を選択する代わりに、アノテータのランクにより高い一致で委員会モデルにより高い重みを割り当てます。
このアプローチは、LIMEのような局所的な説明を生成するためにモデルに依存しない手法を用いて、任意の種類のMLモデルに適用できる。
論文 参考訳(メタデータ) (2020-09-06T08:07:33Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。