Siamese Neural Network for Label-Efficient Critical Phenomena Prediction in 3D Percolation Models
- URL: http://arxiv.org/abs/2507.14159v1
- Date: Sat, 05 Jul 2025 09:51:26 GMT
- Title: Siamese Neural Network for Label-Efficient Critical Phenomena Prediction in 3D Percolation Models
- Authors: Shanshan Wang, Dian Xu, Jianmin Shen, Feng Gao, Wei Li, Weibing Deng,
- Abstract summary: Percolation theory serves as a cornerstone for studying phase transitions and critical phenomena.<n>Most machine learning frameworks for percolation analysis have focused on two-dimensional systems.<n>We propose a Siamese Neural Network (SNN) that leverages features of the largest cluster as discriminative input.
- Score: 6.086561505970236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Percolation theory serves as a cornerstone for studying phase transitions and critical phenomena, with broad implications in statistical physics, materials science, and complex networks. However, most machine learning frameworks for percolation analysis have focused on two-dimensional systems, oversimplifying the spatial correlations and morphological complexity of real-world three-dimensional materials. To bridge this gap and improve label efficiency and scalability in 3D systems, we propose a Siamese Neural Network (SNN) that leverages features of the largest cluster as discriminative input. Our method achieves high predictive accuracy for both site and bond percolation thresholds and critical exponents in three dimensions, with sub-1% error margins using significantly fewer labeled samples than traditional approaches. This work establishes a robust and data-efficient framework for modeling high-dimensional critical phenomena, with potential applications in materials discovery and complex network analysis.
Related papers
- U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling [28.64166932076228]
Electromagnetic (EM) scattering modeling is critical for radar remote sensing.<n>Traditional numerical solvers offer high accuracy, but suffer from scalability issues and substantial computational costs.<n>We propose a U-shaped Physics-Informed Network (U-PINet) to overcome these limitations.
arXiv Detail & Related papers (2025-08-05T12:20:42Z) - Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - Random Matrix Theory for Deep Learning: Beyond Eigenvalues of Linear Models [51.85815025140659]
Modern Machine Learning (ML) and Deep Neural Networks (DNNs) often operate on high-dimensional data.<n>In particular, the proportional regime where the data dimension, sample size, and number of model parameters are all large gives rise to novel and sometimes counterintuitive behaviors.<n>This paper extends traditional Random Matrix Theory (RMT) beyond eigenvalue-based analysis of linear models to address the challenges posed by nonlinear ML models.
arXiv Detail & Related papers (2025-06-16T06:54:08Z) - Uncovering Magnetic Phases with Synthetic Data and Physics-Informed Training [0.0]
We investigate the efficient learning of magnetic phases using artificial neural networks trained on synthetic data.<n>We incorporate two key forms of physics-informed guidance to enhance model performance.<n>Our results show that synthetic, structured, and computationally efficient training schemes can reveal physically meaningful phase boundaries.
arXiv Detail & Related papers (2025-05-15T15:16:16Z) - A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling [1.5862483908050367]
We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling.<n>A dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder.<n>A synthetic model generation method utilizing 3D Gaussian random field (GRF) accurately replicates the electrical structures of real-world geological scenarios.
arXiv Detail & Related papers (2025-03-14T13:48:25Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
This study evaluates the performance of classical tree-based models and advanced neural networks in protein-ligand binding affinity prediction.
We show that combining 2D and 3D model strengths improves active learning outcomes beyond current state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-15T13:06:00Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.