論文の概要: Latent Space Data Fusion Outperforms Early Fusion in Multimodal Mental Health Digital Phenotyping Data
- arxiv url: http://arxiv.org/abs/2507.14175v1
- Date: Thu, 10 Jul 2025 18:10:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-27 08:26:15.940183
- Title: Latent Space Data Fusion Outperforms Early Fusion in Multimodal Mental Health Digital Phenotyping Data
- Title(参考訳): 潜在空間データ融合は、マルチモーダルメンタルヘルスデジタル画像データにおいて早期融合に優れる
- Authors: Youcef Barkat, Dylan Hamitouche, Deven Parekh, Ivy Guo, David Benrimoh,
- Abstract要約: うつ病や不安などの精神疾患は早期発見とパーソナライズされた介入の方法を改善する必要がある。
従来の予測モデルは、精神医学的なデータの複雑なマルチモーダルな性質を捉えるのに失敗する、単調なデータや初期の融合戦略に依存していることが多い。
日常的なうつ症状の予測のための中間的(相対的空間)核融合の評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Mental illnesses such as depression and anxiety require improved methods for early detection and personalized intervention. Traditional predictive models often rely on unimodal data or early fusion strategies that fail to capture the complex, multimodal nature of psychiatric data. Advanced integration techniques, such as intermediate (latent space) fusion, may offer better accuracy and clinical utility. Methods: Using data from the BRIGHTEN clinical trial, we evaluated intermediate (latent space) fusion for predicting daily depressive symptoms (PHQ-2 scores). We compared early fusion implemented with a Random Forest (RF) model and intermediate fusion implemented via a Combined Model (CM) using autoencoders and a neural network. The dataset included behavioral (smartphone-based), demographic, and clinical features. Experiments were conducted across multiple temporal splits and data stream combinations. Performance was evaluated using mean squared error (MSE) and coefficient of determination (R2). Results: The CM outperformed both RF and Linear Regression (LR) baselines across all setups, achieving lower MSE (0.4985 vs. 0.5305 with RF) and higher R2 (0.4695 vs. 0.4356). The RF model showed signs of overfitting, with a large gap between training and test performance, while the CM maintained consistent generalization. Performance was best when integrating all data modalities in the CM (in contradistinction to RF), underscoring the value of latent space fusion for capturing non-linear interactions in complex psychiatric datasets. Conclusion: Latent space fusion offers a robust alternative to traditional fusion methods for prediction with multimodal mental health data. Future work should explore model interpretability and individual-level prediction for clinical deployment.
- Abstract(参考訳): 背景:うつ病や不安などの精神疾患は早期発見とパーソナライズされた介入の方法を改善する必要がある。
従来の予測モデルは、精神医学的なデータの複雑なマルチモーダルな性質を捉えるのに失敗する、単調なデータや初期の融合戦略に依存していることが多い。
中間(相対空間)融合のような高度な統合技術は、より良い精度と臨床的有用性をもたらす可能性がある。
方法: BRIGHTEN 臨床試験から得られたデータを用いて, 日常うつ症状(PHQ-2 スコア)の予測のための中間(相対空間)融合の評価を行った。
我々は、ランダムフォレストモデル(RF)による初期核融合と、オートエンコーダとニューラルネットワークを用いたコンバインドモデル(CM)による中間体融合を比較した。
データセットには、行動的(スマートフォンベース)、人口統計学的、臨床的特徴が含まれていた。
複数の時間分割とデータストリームの組み合わせで実験を行った。
平均二乗誤差(MSE)と判定係数(R2)を用いて評価した。
結果: CM は RF と Linear Regression (LR) のベースラインにおいて, 低い MSE (0.4985 vs. 0.5305 with RF) と高い R2 (0.4695 vs. 0.4356) を達成した。
RFモデルはトレーニングとテスト性能の間に大きなギャップがあり、CMは一貫した一般化を維持した。
複雑な精神医学データセットにおける非線形相互作用を捉えるために、潜在空間融合の価値を強調し、全てのデータモダリティをCMに統合する(RFとは対照的に)際には、性能が最善であった。
結論: 潜在空間融合は、マルチモーダルなメンタルヘルスデータを用いた予測のための従来の融合法に代わる堅牢な代替手段を提供する。
今後は、臨床展開のためのモデル解釈可能性と個人レベルの予測を検討する必要がある。
関連論文リスト
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era [3.2549142515720044]
本稿では,データマイニングのためのマルチモーダルデータフュージョンの新しいプロセスモデルを提案する。
我々のモデルは、効率と信頼性を改善しつつ、計算コスト、複雑さ、バイアスを減らすことを目的としている。
本研究は,糖尿病網膜症における網膜画像と患者のメタデータを用いた予測,衛星画像を用いた家庭内暴力予測,インターネット,国勢調査データ,放射線画像と臨床ノートによる臨床像と人口動態の同定という3つのユースケースを通じて有効性を示す。
論文 参考訳(メタデータ) (2024-04-18T15:52:42Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
そこで本研究では,DrFuseを効果的に多モード核融合を実現するために提案する。
モダリティに共通する特徴と各モダリティに特有の特徴を分離することで、モダリティの欠如に対処する。
実世界の大規模データセットMIMIC-IVとMIMIC-CXRを用いて提案手法を検証する。
論文 参考訳(メタデータ) (2024-03-10T12:41:34Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
ストロークは、25歳以上の成人の約4分の1に影響する一般的な神経疾患である。
AUCでは0.87,0.80,80.45%,F1スコアでは80.45%,精度では0。
論文 参考訳(メタデータ) (2024-02-16T18:51:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
MICCAI 2021 ヘッドとネックタマ (HECKTOR) セグメンテーションと結果予測の課題は、セグメンテーション法を比較するためのプラットフォームを作成する。
腫瘍容積セグメンテーションのために複数のニューラルネットワークを訓練し,これらのセグメンテーションを組込み,平均Dice類似度係数0.75をクロスバリデーションで達成した。
患者進行自由生存の予測のために,臨床,放射線学,深層学習機能を組み合わせたCox比例的ハザード回帰法を提案する。
論文 参考訳(メタデータ) (2021-11-06T10:28:48Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。