論文の概要: Routine: A Structural Planning Framework for LLM Agent System in Enterprise
- arxiv url: http://arxiv.org/abs/2507.14447v1
- Date: Sat, 19 Jul 2025 02:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.8919
- Title: Routine: A Structural Planning Framework for LLM Agent System in Enterprise
- Title(参考訳): Routine: 企業におけるLLMエージェントシステムのための構造計画フレームワーク
- Authors: Guancheng Zeng, Xueyi Chen, Jiawang Hu, Shaohua Qi, Yaxuan Mao, Zhantao Wang, Yifan Nie, Shuang Li, Qiuyang Feng, Pengxu Qiu, Yujia Wang, Wenqiang Han, Linyan Huang, Gang Li, Jingjing Mo, Haowen Hu,
- Abstract要約: エンタープライズ環境におけるエージェントシステムの展開は、しばしばいくつかの課題によって妨げられる。
一般的なモデルは、ドメイン固有のプロセス知識が欠如し、非組織的な計画、主要なツールの欠如、実行の安定性が低下します。
本稿では、明確な構造、明示的な命令、シームレスなパラメータパッシングを備えたマルチステップエージェント計画フレームワークであるRuleineを紹介する。
- 参考スコア(独自算出の注目度): 10.989149053905587
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The deployment of agent systems in an enterprise environment is often hindered by several challenges: common models lack domain-specific process knowledge, leading to disorganized plans, missing key tools, and poor execution stability. To address this, this paper introduces Routine, a multi-step agent planning framework designed with a clear structure, explicit instructions, and seamless parameter passing to guide the agent's execution module in performing multi-step tool-calling tasks with high stability. In evaluations conducted within a real-world enterprise scenario, Routine significantly increases the execution accuracy in model tool calls, increasing the performance of GPT-4o from 41.1% to 96.3%, and Qwen3-14B from 32.6% to 83.3%. We further constructed a Routine-following training dataset and fine-tuned Qwen3-14B, resulting in an accuracy increase to 88.2% on scenario-specific evaluations, indicating improved adherence to execution plans. In addition, we employed Routine-based distillation to create a scenario-specific, multi-step tool-calling dataset. Fine-tuning on this distilled dataset raised the model's accuracy to 95.5%, approaching GPT-4o's performance. These results highlight Routine's effectiveness in distilling domain-specific tool-usage patterns and enhancing model adaptability to new scenarios. Our experimental results demonstrate that Routine provides a practical and accessible approach to building stable agent workflows, accelerating the deployment and adoption of agent systems in enterprise environments, and advancing the technical vision of AI for Process.
- Abstract(参考訳): 共通モデルはドメイン固有のプロセス知識が欠如しており、非組織的な計画につながり、主要なツールが欠如し、実行安定性が低下している。
そこで本研究では,マルチステップのツールコールタスクを高い安定性で実行する際に,エージェントの実行モジュールを案内する,明確な構造,明示的な命令,シームレスなパラメータパスを設計したマルチステップエージェント計画フレームワークであるReutineを紹介する。
実世界の企業シナリオで行われた評価では、Reutineはモデルツールコールの実行精度を大幅に向上させ、GPT-4oを41.1%から96.3%に、Qwen3-14Bを32.6%から83.3%に向上させた。
さらに,ルール追跡学習データセットと微調整Qwen3-14Bを構築し,シナリオ別評価では88.2%の精度向上を実現した。
さらに、我々は、シナリオ固有の多段階のツールコールデータセットを作成するために、ルチンをベースとした蒸留を採用した。
この蒸留データセットの微調整により、モデルの精度は95.5%に向上し、GPT-4oの性能に近づいた。
これらの結果は、ドメイン固有のツール使用パターンを蒸留し、新しいシナリオへのモデル適応性を高める上で、Rutineの有効性を強調している。
我々の実験結果は、Reutineが安定したエージェントワークフローを構築し、エンタープライズ環境におけるエージェントシステムのデプロイと導入を加速し、AI for Processの技術的なビジョンを前進させる実践的でアクセスしやすいアプローチを提供することを示している。
関連論文リスト
- OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks [52.87238755666243]
OmniEARは,言語モデルが身体的相互作用やツールの使用,マルチエージェントの協調にどう影響するかを評価するためのフレームワークである。
我々は、家庭と工業領域にまたがる1500のシナリオにおける連続的な物理的特性と複雑な空間的関係をモデル化する。
我々の体系的な評価は、モデルが制約から推論しなければならない場合、厳しい性能劣化を示す。
論文 参考訳(メタデータ) (2025-08-07T17:54:15Z) - NatureGAIA: Pushing the Frontiers of GUI Agents with a Challenging Benchmark and High-Quality Trajectory Dataset [16.676904484703]
本稿ではCausal Pathwaysの原理に基づく新しいベンチマークであるNaturalGAIAを紹介する。
このパラダイムは複雑なタスクを検証可能な一連の原子ステップに構造化し、厳密で完全に自動化され、再現可能な評価基準を保証する。
次に、このデータセットを用いて、Q2.5-VL-7Bモデル上でReinforcement FineTuning(RFT)を行う。
論文 参考訳(メタデータ) (2025-08-02T11:53:41Z) - Self-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks [11.125564622217892]
大規模言語モデルエージェントは、人間の介入なしに自身の成功経験から学習することで改善する。
提案手法は,将来的なタスクのコンテキスト内例として機能する,自己生成トラジェクトリのデータベースを構築し,改良する。
我々の軌道ブートストラッピング技術は、エージェントが経験を通じて自律的に改善できることを示し、労働集約的な知識工学に代わるスケーラブルな代替手段を提供する。
論文 参考訳(メタデータ) (2025-05-01T00:48:12Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints [59.645885492637845]
SOPBenchは、各サービス固有のSOPコードプログラムを実行可能な関数の有向グラフに変換する評価パイプラインである。
提案手法では,各サービス固有のSOPコードプログラムを実行可能関数の有向グラフに変換し,自然言語SOP記述に基づいてこれらの関数を呼び出しなければならない。
我々は18の先行モデルを評価し、上位モデルでさえタスクが困難であることを示す。
論文 参考訳(メタデータ) (2025-03-11T17:53:02Z) - An Innovative Data-Driven and Adaptive Reinforcement Learning Approach for Context-Aware Prescriptive Process Monitoring [3.4437362489150254]
本稿では,Fun-Tuned Offline Reinforcement Learning Augmented Process Sequence Optimizationという新しいフレームワークを提案する。
FORLAPSは、状態依存型報酬形成機構によって強化された学習を活用して、ビジネスプロセスにおける最適な実行経路を特定することを目的としている。
また,FOLAPSは資源使用時間の31%削減,プロセス時間の23%削減を実現している。
論文 参考訳(メタデータ) (2025-01-17T20:31:35Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
大きな言語モデル(LLM)は、複雑な推論を必要とする自然言語タスクにおいて顕著な能力を示している。
静的データセットに対する従来の教師付き事前トレーニングは、自律的なエージェント機能を実現するには不十分である。
本稿では,モンテカルロ木探索(MCTS)を自己批判機構と組み合わせ,エージェント間相互作用を反復的に微調整するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T20:52:13Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Devil's Advocate: Anticipatory Reflection for LLM Agents [53.897557605550325]
我々のアプローチは、LLMエージェントに対して、与えられたタスクを管理可能なサブタスクに分解するように促す。
イントロスペクティブ・イントロスペクティブ・イントロスペクティブ・イントロスペクティブ(introspective intervention)を3回実施する。
潜在的な障害の予測と、アクション実行前の代替策。
サブタスクの目的とのポストアクションアライメントと、計画実行における最大限の努力を保証するための改善によるバックトラック。
論文 参考訳(メタデータ) (2024-05-25T19:20:15Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Cumulative Reasoning with Large Language Models [12.267474250936123]
Cumulative Reasoning (CR)は、大規模言語モデル(LLM)問題解決を強化する構造化フレームワークである。
CRはLLMを3つの異なる役割 - Proposer、Verifier(s)、Reporter - タスクを体系的に分解し、中間的推論ステップを生成し、検証し、ソリューションに構成する。
論文 参考訳(メタデータ) (2023-08-08T16:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。