Self-Supervised Distillation of Legacy Rule-Based Methods for Enhanced EEG-Based Decision-Making
- URL: http://arxiv.org/abs/2507.14542v1
- Date: Sat, 19 Jul 2025 09:01:13 GMT
- Title: Self-Supervised Distillation of Legacy Rule-Based Methods for Enhanced EEG-Based Decision-Making
- Authors: Yipeng Zhang, Yuanyi Ding, Chenda Duan, Atsuro Daida, Hiroki Nariai, Vwani Roychowdhury,
- Abstract summary: High-frequency oscillations (HFOs) in intracranial Electroencephalography (iEEG) are critical biomarkers for localizing the epileptogenic zone in epilepsy treatment.<n>Traditional rule-based detectors for HFOs suffer from unsatisfactory precision, producing false positives that require time-consuming manual review.<n>We propose the Self-Supervised to Label Discovery (SS2LD) framework to refine the large set of candidate events generated by legacy detectors into a precise set of pathological HFOs.
- Score: 10.883645363577502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-frequency oscillations (HFOs) in intracranial Electroencephalography (iEEG) are critical biomarkers for localizing the epileptogenic zone in epilepsy treatment. However, traditional rule-based detectors for HFOs suffer from unsatisfactory precision, producing false positives that require time-consuming manual review. Supervised machine learning approaches have been used to classify the detection results, yet they typically depend on labeled datasets, which are difficult to acquire due to the need for specialized expertise. Moreover, accurate labeling of HFOs is challenging due to low inter-rater reliability and inconsistent annotation practices across institutions. The lack of a clear consensus on what constitutes a pathological HFO further challenges supervised refinement approaches. To address this, we leverage the insight that legacy detectors reliably capture clinically relevant signals despite their relatively high false positive rates. We thus propose the Self-Supervised to Label Discovery (SS2LD) framework to refine the large set of candidate events generated by legacy detectors into a precise set of pathological HFOs. SS2LD employs a variational autoencoder (VAE) for morphological pre-training to learn meaningful latent representation of the detected events. These representations are clustered to derive weak supervision for pathological events. A classifier then uses this supervision to refine detection boundaries, trained on real and VAE-augmented data. Evaluated on large multi-institutional interictal iEEG datasets, SS2LD outperforms state-of-the-art methods. SS2LD offers a scalable, label-efficient, and clinically effective strategy to identify pathological HFOs using legacy detectors.
Related papers
- U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord [7.811634659561162]
T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy.<n>Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets.<n>We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations.
arXiv Detail & Related papers (2025-03-17T17:33:32Z) - On the challenges of detecting MCI using EEG in the wild [6.505818939553856]
Recent studies have shown promising results in the detection of Mild Cognitive Impairment (MCI) using Electroencephalogram (EEG) data.<n>We investigate the potential limitations and challenges in developing a robust MCI detection method using two contrasting datasets.
arXiv Detail & Related papers (2025-01-15T15:20:11Z) - Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods.
Our approach utilizes data collected manually through a serious game specifically designed for this purpose.
Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning framework.
arXiv Detail & Related papers (2024-10-25T23:00:12Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Deep Omni-supervised Learning for Rib Fracture Detection from Chest
Radiology Images [41.62893318123283]
Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome.
DL-based object detection models requires a huge amount of bounding box annotation.
Annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible.
We present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible.
arXiv Detail & Related papers (2023-06-23T05:36:03Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
Current artifact detection pipelines are resource-hungry and rely heavily on hand-crafted features.
We propose E4G, a deep learning framework for high frequency EEG artifact detection.
Our framework exploits the early exit paradigm, building an implicit ensemble of models capable of capturing uncertainty.
arXiv Detail & Related papers (2021-07-21T07:05:42Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients.
Applying machine learning models to electronic health records is a challenge due to the pervasiveness of missing values.
arXiv Detail & Related papers (2021-06-22T15:49:01Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.