Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
- URL: http://arxiv.org/abs/2507.14698v1
- Date: Sat, 19 Jul 2025 17:23:38 GMT
- Title: Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
- Authors: Xuetao Lin, Tianhao Peng, Peihong Dai, Yu Liang, Wenjun Wu,
- Abstract summary: SST-CL is a novel framework integrating spatial-temporal transformers with curriculum learning.<n>An intensity-aware curriculum learning strategy guides training from high-intensity to low-intensity emotional states.<n>Experiments on three benchmark datasets demonstrate state-of-the-art performance across various emotional intensity levels.
- Score: 2.847161275680418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EEG-based emotion recognition plays an important role in developing adaptive brain-computer communication systems, yet faces two fundamental challenges in practical implementations: (1) effective integration of non-stationary spatial-temporal neural patterns, (2) robust adaptation to dynamic emotional intensity variations in real-world scenarios. This paper proposes SST-CL, a novel framework integrating spatial-temporal transformers with curriculum learning. Our method introduces two core components: a spatial encoder that models inter-channel relationships and a temporal encoder that captures multi-scale dependencies through windowed attention mechanisms, enabling simultaneous extraction of spatial correlations and temporal dynamics from EEG signals. Complementing this architecture, an intensity-aware curriculum learning strategy progressively guides training from high-intensity to low-intensity emotional states through dynamic sample scheduling based on a dual difficulty assessment. Comprehensive experiments on three benchmark datasets demonstrate state-of-the-art performance across various emotional intensity levels, with ablation studies confirming the necessity of both architectural components and the curriculum learning mechanism.
Related papers
- Decomposing the Entropy-Performance Exchange: The Missing Keys to Unlocking Effective Reinforcement Learning [106.68304931854038]
Reinforcement learning with verifiable rewards (RLVR) has been widely used for enhancing the reasoning abilities of large language models (LLMs)<n>We conduct a systematic empirical analysis of the entropy-performance exchange mechanism of RLVR across different levels of granularity.<n>Our analysis reveals that, in the rising stage, entropy reduction in negative samples facilitates the learning of effective reasoning patterns.<n>In the plateau stage, learning efficiency strongly correlates with high-entropy tokens present in low-perplexity samples and those located at the end of sequences.
arXiv Detail & Related papers (2025-08-04T10:08:10Z) - Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach [3.0868241505670198]
We propose a novel framework called the Dynamic Contrastive Dual-Path Network (D-HAR)<n>The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseCDPNet branches collaboratively process multimodal sensor data.<n>Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction.<n>Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation.
arXiv Detail & Related papers (2025-07-03T17:37:46Z) - Zero-Shot EEG-to-Gait Decoding via Phase-Aware Representation Learning [9.49131859415923]
We propose NeuroDyGait, a domain-generalizable EEG-to-motion decoding framework.<n>It uses structured contrastive representation learning and relational domain modeling to achieve semantic alignment between EEG and motion embeddings.<n>It achieves zero-shot motion prediction for unseen individuals without requiring adaptation and superior performance in cross-subject gait decoding on benchmark datasets.
arXiv Detail & Related papers (2025-06-24T06:03:49Z) - CRIA: A Cross-View Interaction and Instance-Adapted Pre-training Framework for Generalizable EEG Representations [52.251569042852815]
CRIA is an adaptive framework that utilizes variable-length and variable-channel coding to achieve a unified representation of EEG data across different datasets.<n>The model employs a cross-attention mechanism to fuse temporal, spectral, and spatial features effectively.<n> Experimental results on the Temple University EEG corpus and the CHB-MIT dataset show that CRIA outperforms existing methods with the same pre-training conditions.
arXiv Detail & Related papers (2025-06-19T06:31:08Z) - SITE: towards Spatial Intelligence Thorough Evaluation [121.1493852562597]
Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships.<n>We introduce SITE, a benchmark dataset towards SI Thorough Evaluation.<n>Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science.
arXiv Detail & Related papers (2025-05-08T17:45:44Z) - Technical Approach for the EMI Challenge in the 8th Affective Behavior Analysis in-the-Wild Competition [10.741278852581646]
Emotional Mimicry Intensity (EMI) estimation plays a pivotal role in understanding human social behavior and advancing human-computer interaction.<n>This paper proposes a dual-stage cross-modal alignment framework to address the limitations of existing methods.<n> Experiments on the Hume-Vidmimic2 dataset demonstrate superior performance with an average Pearson coefficient correlation of 0.51 across six emotion dimensions.
arXiv Detail & Related papers (2025-03-13T17:46:16Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
We present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT) for simultaneous subject localization and emotion classification.
We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC.
arXiv Detail & Related papers (2024-04-26T07:30:32Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
We propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals.
DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features.
arXiv Detail & Related papers (2020-09-26T07:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.