論文の概要: Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs
- arxiv url: http://arxiv.org/abs/2507.14785v1
- Date: Sun, 20 Jul 2025 02:00:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.051162
- Title: Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs
- Title(参考訳): 金融グラフにおけるマネーロンダリング検出のためのLLMの文脈内学習能力の探索
- Authors: Erfan Pirmorad,
- Abstract要約: 本稿では,財務知識グラフから抽出した局所化部分グラフに対する推論エンジンとして,大規模言語モデル(LLM)の利用について検討する。
LLMはアナリストスタイルの論理をエミュレートし、赤いフラグをハイライトし、一貫性のある説明を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity and interconnectivity of entities involved in money laundering demand investigative reasoning over graph-structured data. This paper explores the use of large language models (LLMs) as reasoning engines over localized subgraphs extracted from a financial knowledge graph. We propose a lightweight pipeline that retrieves k-hop neighborhoods around entities of interest, serializes them into structured text, and prompts an LLM via few-shot in-context learning to assess suspiciousness and generate justifications. Using synthetic anti-money laundering (AML) scenarios that reflect common laundering behaviors, we show that LLMs can emulate analyst-style logic, highlight red flags, and provide coherent explanations. While this study is exploratory, it illustrates the potential of LLM-based graph reasoning in AML and lays groundwork for explainable, language-driven financial crime analytics.
- Abstract(参考訳): マネーロンダリングに関わるエンティティの複雑さと相互接続性は、グラフ構造化データに対する需要調査的推論である。
本稿では,財務知識グラフから抽出した局所化部分グラフに対する推論エンジンとして,大規模言語モデル(LLM)の利用について検討する。
本稿では,興味のあるエンティティの周囲のkホップ近傍を検索し,構造化テキストにシリアライズする軽量パイプラインを提案する。
一般的なマネーロンダリング動作を反映した合成アンチマネーロンダリング(AML)シナリオを用いて,LLMがアナリストスタイルのロジックをエミュレートし,赤旗をハイライトし,一貫性のある説明を提供することを示す。
この研究は探索的ではあるが、AMLにおけるLLMベースのグラフ推論の可能性を示し、説明可能な言語主導の金融犯罪分析の基礎を定めている。
関連論文リスト
- Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
大規模言語モデル(LLM)は、拡張されたChain-of-Thought(CoT)生成を通じて洗練された推論能力を示す。
RLMは、数発のプロンプトによる性能劣化など、直感的で不安定な動作を示すことが多い。
RLMの推論過程をより良くモデル化するための統一的なグラフベース分析フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-20T03:54:57Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
大規模言語モデル(LLM)は、関連性を評価し、情報検索(IR)タスクをサポートする。
メカニスティック・インタプリタビリティのレンズを用いて,異なるLLMモジュールが関係判断にどのように寄与するかを検討する。
論文 参考訳(メタデータ) (2025-04-10T16:14:55Z) - Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
推論誤りを特定し,LLMの性能を評価するための自動評価フレームワークを開発した。
我々の研究は、論理集約的な複雑なタスクに対する推論チェーンの詳細なエラー解析に使用できる評価フレームワークとしても機能する。
論文 参考訳(メタデータ) (2025-02-08T19:49:32Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
本稿では,大量のオフラインデータを解釈可能な一階述語論理規則に自動抽出する新しいフレームワーク,RuAGを提案する。
我々は,自然言語処理,時系列,意思決定,産業タスクなど,公共および民間の産業タスクに関する枠組みを評価する。
論文 参考訳(メタデータ) (2024-11-04T00:01:34Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示している。
LLMがグラフ上での学習において堅牢性を示すかどうかは不明である。
論文 参考訳(メタデータ) (2024-07-16T09:05:31Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
我々は,大規模言語モデル (LLM) が,合成学習データにおける意味的,数値的,構造的,推論パターンを超えうるか否かを評価し,実世界のグラフベースタスクにおける有用性を向上させる。
トレーニング後のアライメントが現実世界のタスクに最も有望であるのに対して、LLMグラフの推論をパターンを超えて行うことは、依然としてオープンな研究課題である。
論文 参考訳(メタデータ) (2024-06-23T02:59:15Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Unveiling LLMs: The Evolution of Latent Representations in a Dynamic Knowledge Graph [15.129079475322637]
この研究は、大規模言語モデルが文レベルのクレーム検証のために内部的に表現する事実情報を明らかにする。
本稿では,トークン表現に埋め込まれた事実知識をベクトル空間から基底述語集合にデコードするエンド・ツー・エンドのフレームワークを提案する。
本フレームワークでは,推論中にトークン表現を変更するベクトルレベル手法であるアクティベーションパッチを用いて,符号化された知識を抽出する。
論文 参考訳(メタデータ) (2024-04-04T17:45:59Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。