論文の概要: A Novel Downsampling Strategy Based on Information Complementarity for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2507.14790v1
- Date: Sun, 20 Jul 2025 02:30:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.053156
- Title: A Novel Downsampling Strategy Based on Information Complementarity for Medical Image Segmentation
- Title(参考訳): 医用画像分割のための情報相補性に基づく新しいダウンサンプリング戦略
- Authors: Wenbo Yue, Chang Li, Guoping Xu,
- Abstract要約: 本研究では,情報相補性に基づくダウンサンプリング手法を提案する -ハイブリッドプールダウンサンプリング(HPD)-
中心となるのは、従来の手法をMinMaxingに置き換えることであり、局所領域の最大値情報を抽出することで、画像の明暗コントラストと細部の特徴を効果的に保持することである。
ACDCおよびSynapseデータセット上の様々なCNNアーキテクチャの実験により、HPDはセグメンテーション性能において従来の手法よりも優れており、DSC係数は平均0.5%向上している。
- 参考スコア(独自算出の注目度): 1.9214752983226675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In convolutional neural networks (CNNs), downsampling operations are crucial to model performance. Although traditional downsampling methods (such as maximum pooling and cross-row convolution) perform well in feature aggregation, receptive field expansion, and computational reduction, they may lead to the loss of key spatial information in semantic segmentation tasks, thereby affecting the pixel-by-pixel prediction accuracy.To this end, this study proposes a downsampling method based on information complementarity - Hybrid Pooling Downsampling (HPD). The core is to replace the traditional method with MinMaxPooling, and effectively retain the light and dark contrast and detail features of the image by extracting the maximum value information of the local area.Experiment on various CNN architectures on the ACDC and Synapse datasets show that HPD outperforms traditional methods in segmentation performance, and increases the DSC coefficient by 0.5% on average. The results show that the HPD module provides an efficient solution for semantic segmentation tasks.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)では、ダウンサンプリング操作がパフォーマンスのモデル化に不可欠である。
従来のダウンサンプリング手法(最大プーリングやクロスロー畳み込みなど)は,特徴集約,受容場拡大,計算量削減などにおいて良好に機能するが,意味的セグメンテーションタスクにおけるキー空間情報の損失を招き,画素ごとの予測精度に影響を与える可能性がある。
中心となるのは、従来の手法をMinMaxPoolingに置き換えることであり、局所領域の最大値情報を抽出することで、画像の明暗コントラストと細部の特徴を効果的に保持することである。
その結果,HPDモジュールはセマンティックセグメンテーションタスクの効率的なソリューションを提供することがわかった。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
我々は,新たな不確実性認識変換(SAUNA)を導入する。
以上の結果から,SAUNA変換の統合とセグメント化損失は,異なるセグメンテーションモデルにおいて大きな性能向上をもたらすことが示唆された。
論文 参考訳(メタデータ) (2024-05-27T04:17:10Z) - Towards Efficient and Accurate CT Segmentation via Edge-Preserving Probabilistic Downsampling [2.1465347972460367]
限られたリソースやネットワークトレーニングの迅速化を必要とするイメージやラベルのダウンサンプリングは、小さなオブジェクトと薄いバウンダリの損失につながる。
これにより、セグメンテーションネットワークのイメージを正確に解釈し、詳細なラベルを予測する能力が損なわれ、元の解像度での処理と比較して性能が低下する。
エッジ保存型確率ダウンサンプリング(EPD)という新しい手法を提案する。
ローカルウィンドウ内のクラス不確実性を利用してソフトラベルを生成し、ウィンドウサイズがダウンサンプリング係数を規定する。
論文 参考訳(メタデータ) (2024-04-05T10:01:31Z) - Learning Invariant Inter-pixel Correlations for Superpixel Generation [12.605604620139497]
学習可能な特徴は、制約付き判別能力を示し、不満足なピクセルグループ化性能をもたらす。
本稿では,不変画素間相関と統計特性を選択的に分離するContentangle Superpixelアルゴリズムを提案する。
4つのベンチマークデータセットの実験結果は、既存の最先端手法に対するアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-28T09:46:56Z) - On the Effect of Image Resolution on Semantic Segmentation [27.115235051091663]
本研究では,高分解能セグメンテーションを直接生成できるモデルが,より複雑なシステムの性能と一致することを示す。
提案手法は,ボトムアップ情報伝搬手法を様々なスケールで活用する。
先進的なセマンティックセグメンテーションデータセットを用いて,本手法を厳格に検証した。
論文 参考訳(メタデータ) (2024-02-08T04:21:30Z) - MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network [65.1004435124796]
本稿では,MB-RACS(Message-Bounds-based Rate-Adaptive Image Compressed Sensing Network)フレームワークを提案する。
実験により,提案手法が現在の先行手法を超越していることが実証された。
論文 参考訳(メタデータ) (2024-01-19T04:40:20Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
本研究では,合成画像をよりリアルに見せるために,前景調和フレームワーク(ARHNet)を提案する。
実画像と合成画像を用いたセグメンテーション性能の向上に本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-02T10:39:29Z) - Adaptive Fractional Dilated Convolution Network for Image Aesthetics
Assessment [33.945579916184364]
適応型分数拡張畳み込み(AFDC)は、畳み込みカーネルレベルでこの問題に取り組むために開発された。
ミニバッチ学習のための簡潔な定式化を行い,グループ化戦略を用いて計算オーバーヘッドを削減する。
提案手法は,AVAデータセットを用いた画像美学評価において,最先端の性能を実現することを実証した。
論文 参考訳(メタデータ) (2020-04-06T21:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。