Transaction Profiling and Address Role Inference in Tokenized U.S. Treasuries
- URL: http://arxiv.org/abs/2507.14808v1
- Date: Sun, 20 Jul 2025 03:54:06 GMT
- Title: Transaction Profiling and Address Role Inference in Tokenized U.S. Treasuries
- Authors: Junliang Luo, Katrin Tinn, Samuel Ferreira Duran, Di Wu, Xue Liu,
- Abstract summary: Tokenized U.S. Treasuries have emerged as a prominent subclass of real-world assets (RWAs)<n>This paper conducts a quantitative, function-level dissection of U.S. Treasury-backed RWA tokens across multi-chain networks.
- Score: 5.00898007095729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tokenized U.S. Treasuries have emerged as a prominent subclass of real-world assets (RWAs), offering cryptographically enforced, yield-bearing instruments collateralized by sovereign debt and deployed across multiple blockchain networks. While the market has expanded rapidly, empirical analyses of transaction-level behaviour remain limited. This paper conducts a quantitative, function-level dissection of U.S. Treasury-backed RWA tokens including BUIDL, BENJI, and USDY, across multi-chain: mostly Ethereum and Layer-2s. We analyze decoded contract calls to isolate core functional primitives such as issuance, redemption, transfer, and bridge activity, revealing segmentation in behaviour between institutional actors and retail users. To model address-level economic roles, we introduce a curvature-aware representation learning framework using Poincar\'e embeddings and liquidity-based graph features. Our method outperforms baseline models on our RWA Treasury dataset in role inference and generalizes to downstream tasks such as anomaly detection and wallet classification in broader blockchain transaction networks. These findings provide a structured understanding of functional heterogeneity and participant roles in tokenized Treasury in a transaction-level perspective, contributing new empirical evidence to the study of on-chain financialization.
Related papers
- Efficient Blockchain-based Steganography via Backcalculating Generative Adversarial Network [105.47203971578871]
We propose a generic blockchain-based steganography framework (GBSF)<n>The sender generates the required fields such as amount and fees, where the additional covert data is embedded to enhance the channel capacity.<n>Based on GBSF, we design a reversible generative adversarial network (R-GAN)<n>We propose R-GAN with Counter-intuitive data preprocessing and Custom activation functions, namely CCR-GAN.
arXiv Detail & Related papers (2025-06-19T04:43:41Z) - Machine Learning-Based Detection and Analysis of Suspicious Activities in Bitcoin Wallet Transactions in the USA [1.588234879488451]
The study aims to create a model with a feature for identifying trends and outliers that can expose illicit activity.<n>The dataset is composed of in-depth Bitcoin wallet transactional information.<n>The application of machine algorithms in tracking cryptocurrencies is a tool for creating transparent and secure U.S. markets.
arXiv Detail & Related papers (2025-04-04T00:07:32Z) - FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks [2.855856661274715]
Existing methods primarily focus on snapshots of transaction networks.<n>We propose an incremental approach for random walk-based node representation learning in transaction networks.<n>Potential applications include transaction network monitoring, the efficient classification of blockchain addresses for fraud detection or the identification of specialized address types within the network.
arXiv Detail & Related papers (2025-01-21T20:34:38Z) - STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading [55.02735046724146]
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.<n>We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.<n>Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - Generative Pretraining at Scale: Transformer-Based Encoding of
Transactional Behavior for Fraud Detection [0.0]
Our model confronts token explosion and reconstructs behavioral sequences, providing a nuanced understanding of transactional behavior.
We integrate a differential convolutional approach to enhance anomaly detection, bolstering the security and efficacy of one of the largest online payment merchants in China.
arXiv Detail & Related papers (2023-12-22T03:15:17Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Deep Graph Convolutional Reinforcement Learning for Financial Portfolio
Management -- DeepPocket [6.85316573653194]
Portfolio management aims at maximizing the return on investment while minimizing risk by continuously reallocating the assets forming the portfolio.
A graph convolutional reinforcement learning framework called DeepPocket is proposed whose objective is to exploit the time-varying interrelations between financial instruments.
DeepPocket is evaluated against five real-life datasets over three distinct investment periods.
arXiv Detail & Related papers (2021-05-06T15:07:36Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
arXiv Detail & Related papers (2021-04-14T00:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.